YISEL

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

AREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRONICA
E TELECOMUNICACOES E DE COMPUTADORES

Guiding Monte Carlo tree searches with neural
networks in the game of Go

Goncalo Antunes Mendes Ferreira
(BA)

A dissertation submitted in fulfillment of the requirements for the
degree of Master in Computer Science and Computer Engineering

Adviser

Prof. Hélder Jorge Pinheiro Pita (PhD)

Jury
Prof. Manuel Martins Barata (PhD, President)

Prof. Gongalo Caetano Marques (PhD)

Prof. Hélder Jorge Pinheiro Pita (PhD)

May, 2016

Abstract

The game of Go remains one of the few deterministic perfect information games
where computer players still struggle against professional human players. In this
work two methods of derivation of artificial neural networks — by genetic evolution
of symbiotic populations, and by training of multilayer perceptron networks with
backpropagation — are analyzed for the production of a neural network suitable for
guiding a Monte Carlo tree search algorithm. This last family of algorithms has been
the most successful in computer Go software in the last decade. Using a neural net-
work to reduce the branching complexity of the search is an approach to the problem
that is currently being revitalized, with the advent of the application of deep convo-
lution neural networks. DCNN however require computational facilities that many
computers still don’t have. This work explores the impact of simpler neural net-
works for the purpose of guiding Monte Carlo tree searches, and the production of a
state-of-the-art computer Go program. For this several improvements to Monte Carlo
tree searches are also explored. The work is further built upon with considerations
related to the parallelization of the search, and the addition of other components
necessary for competitive programs such as time control mechanisms and opening
books. Time considerations for playing against humans are also proposed for an
extra psychological advantage. The final software — named MatilddY - is not only
the sum of a series of experimental parts surrounding Monte Carlo Tree Search ap-
plied to Go, but also an attempt at the strongest possible solution for shared memory
systems.

Keywords: Go, Monte Carlo Tree Search, Transpositions, Game Tree, Machine
Learning, Neural Networks

L After the nickname of the authors favorite World War II tank: the British Infantry Tank Mark II.

Resumo

O jogo de tabuleiro Go é um dos poucos jogos deterministicos em que os compu-
tadores ainda ndo conseguem vencer jogadores humanos profissionais consistente-
mente. Neste trabalho dois métodos de aprendizagem — por um algoritmo genético
e por treino por propagacdo do erro — sdo utilizados para criar redes neuronais ca-
pazes de assistir um algoritmo de pesquisa em arvore de Monte Carlo. Este ultimo
algoritmo tem sido o mais bem sucedido na ultima década de investigacdo sobre
Go. A utilizacdo de uma rede neuronal € uma abordagem que estd a sofrer uma re-
vitalizacdo, com os recentes sucessos de redes neuronais profundas de convolucao.
Estas necessitam, contudo, de recursos que ainda sdo muitas vezes proibitivos. Este
trabalho explora o impacto de redes neuronais mais simples e a producdo de um
software representativo do estado da arte. Para isto é complementado com técnicas
para pesquisas em drvore de Monte Carlo, aquisicdo automdtica de conhecimento,
paralelismo em arvore, otimizacao e outros problemas presentes na computacao apli-
cada ao jogo de Go. O software produzido — Matilda — é por isso o culminar de um
conjunto de experiéncias nesta area.

(Este texto foi escrito ao abrigo do novo acordo ortografico.)

Palavras-chave: Go, Pesquisa em arvore de Monte Carlo, Transposicoes, Arvore
de Jogo, Aprendizagem Automadtica, Redes Neuronais

“The question of whether a computer can think is no more interesting than the
question of whether a submarine can swim.”

Edsger W. Dijkstra

Contents

13.3.7 Play criticality
13.3.8 Plav effectivity

CONTENTS

il

List of Figures

iii

Acronyms

AMAF All-Moves-As-First. [16] 28H35], [63], [68]
ANN Artificial Neural Network. [2] [16] [40H43] [45] 56, 58] [79] [BTHS6),

CFG Common Fate Graph. [71] [73] [75]

CNN Convolution Neural Networks. 11 2] [17] [41] [42] [47]
GTP Go Text Protocol. [16] [I9] 21}, [44] [45] 50} 51}, [55] 56| 58] [77], 87 [88]
LGRF Last-Good-Reply with Forgetting. 34} 35} [61]

MC Monte Carlo. [16] 23] 29} 3T}, 32} [34} [35] [37, [63], (64, [87]

MCTS Monte Carlo tree search. [, 2] 15H17] 211 23] 25 2729 31 3437 [41] [42]
49, [5T1, 53} [55} [60} [63H63], [68, (701, (72} (73], [75H77, [79, 81}, [85], 91}, 02

MDP Markov Decision Problem. 22]

MLP Multilayer Perceptrons. [41] 47H49] [63], [77] [79, BT}, 82,
MM Minorization-Maximization. [75]

RAVE Rapid Action Value Estimation. [16] 28] [29] 31134, [61] [64] 68

SANE Symbiotic Adaptive Neuro-Evolution. [16] 4144 [46] [47] [56] [81], [85] 86,
91

SGF Smart Go Format. [I5] 16 [21], 59| [77,

UCB Upper Confidence Bounds. 23] 25] 26, 29, 3]

A%

Acronyms

UCT Upper Confidence Bounds for trees. [16] 25| 27] 29} 31 33} 36| B7] 63]
[64]

UCT+T Upper Confidence Bounds for trees with transpositions table. 27, [51], 58]
69

vi

Chapter

Introduction

1.1 Motivation

After the defeat of western chess champion Garry Kasparov in 1997 and the avail-
ability of affordable personal computers, a number of abstract games that were pre-
viously relegated to the backstage experienced a surge of interest. Go was an obvious
next objective, given its popularity — the International Go Federation reports on over
40 million Go players worldwide. It has, however, eluded computer scientists to
this day, with current top of the line Go programs still having little chance against
Japanese professionals. Some upsets gradually happen, with computers needing less
and less handicaps to defeat professional players, but the reign of, affordable, master
computer play is yet to be seen.

Apart from the challenge or mystery in the future, Go is a beautiful game. While
chess has different kinds of pieces, special rules (en-passant, repetition, promotions,
castling), Go features simple rules, easy to explain to a child and represent in com-
puter software; with matches usually ending with the agreement of both players.
Nevertheless it remains a difficult game to master, with much disagreement on many
parts of the game even given its long history and study. It is not uncommon to hear
of players dedicating their whole lives to the game and popularizing a particular
style of play, opening or continuation.

The world of computer Go was also rocked in the last decade with the devel-
opment of [Monte Carlo tree search (MCTS)| algorithms. Before the excitement has
dwindled down, the recent surge of interest in|Convolution Neural Networks (CNN)|
has brought new hope for overcoming the last hurdle — defeating a human champion
in an even match.

The motivation behind this work is more modest: to explore this area and build
a base from which to build a competitive program. This kind of work takes many

1

1.2. GOALS AND EXPECTATIONS

years, and may come too late, but working on this area of research and on Go is
reward enough for a lifetime.

On a personal note, the interest grew first in the form of a computer chess pro-
gram, that used a minimax algorithm with @ — 3 pruning. Upon discovering the
game of Go, the program was rewritten and a Monte Carlo planner was added. This
early phase of development, influenced the architecture and availability of multiple
playing strategies in Matilda, although since then the minimax algorithm has been
removed.

Development continued in parallel, in one approach through the improvement
of the algorithm; and in another through the training and evolution of neural
networks. Eventually the efforts would merge, and the work focus on improving the
strength of the program as a whole. What is shown here is both what was considered
most relevant and what is now present in the resulting software.

1.2 Goals and expectations

This work consists in the exploration of a number of topics for the production of a
computer Go program. It attempts to apply research in the field of machine learning
with |Artificial Neural Network (ANN)| to the more recent work done in for
deterministic perfect information games, in order to make a stronger computer Go
player. It is also conveniently inserted between last decades research and the
emerging research on the application of

The first and main goal is to produce a computer Go software that can play Go
at reasonable strength with both human and computer players, in consumer grade
hardware. This software will use a number of algorithms popularized since 2007 to
form a program that is both strong and representative of the current state of the art
in computer Go.

The second goal consists in the exploration of techniques for producing Go play-
ing[ANN], or helper networks: i.e. a system that is aimed at improving a specific part
of the algorithm without being overwhelmed by the entire complexity of
the game; and how best to integrate the generated [ANNlin [MCTSL

It is expected that the program at the time of delivery will be significantly weaker
that the best programs right now, since a great number of things will invariably
have bugs, be incorrect, misparametrized or missing. It is also expected that the use
of a simple would weaken the strength of the program in small boards and
situations with local fights, but hopefully provide a modest increase in strength in
the early game for larger boards.

2

1.3. STRUCTURE OF THIS DOCUMENT

1.3 Structure of this document

Starting in Chapter 2 this document introduces the rules of the game of Go together
with some problem specific terminology that will later on be useful throughout the
text. Then, a number of techniques used in computer Go are syntactically presented
to the reader, so to bring everyone together — reader and writer — up to date on the
work on computer Go of the last decades.

The solution of Matilda is then presented in Chapter 3 in a conceptual overview.
There are many parts other than deciding what to play in a Go playing program and
while this discussion might not be the most interesting, it is crucial for navigating the
source code with ease. All the techniques presented in this chapter were tested in
Matilda. In Chapter 4 — Implementation, a number of corrections and performance
adaptations to the previous techniques are presented. Problems that are implemen-
tation specific are also explored. It is in this chapter that the program strength at
playing Go and performance come into play, and determine how and what previous
techniques are used. While some implementation decisions can be justified — many
are the pragmatic result of long periods of testing.

The document concludes with Chapter 5 with some commentary of the direction
of computer Go, the difficulties, development and results obtained in this work, and
suggestions for future work; some directed at no one in particular, others at Matilda
itself.

The text in this document is enriched with digital textual links. When these links
target an outside document, the corresponding address is also printed so the reader
does not require a digital copy of the document. It is however suggested the use of a
PDF reader. This document also does not feature a glossary, preferring to introduce
the many context specific terms throughout the text. As a replacement you can find
an index of these terms at the very end of the document, and a list of acronyms in
the beginning.

This document is written in American English.

Accompanying software

This work is accompanied by the source code for a series of computer programs,
under the umbrella designation of Matilda.

You can find a copy of the source code at https://bitbucket.com/gonmf/matilda.
Git is used as the version control system and issue tracking is found from the projects
web page.

https://bitbucket.com/gonmf/matilda

Chapter 2

Problem

2.1 The game of Go

Go is a board game for two players invented in China before 4th century BC. It was
highly regarded as a national art and would eventually spread to Korea, and Japan.
The game became the most popular board game in Japan, with schools and min-
istries formed. Because of this, much Go terminology is borrowed from the Japanese
language, like the use of kyu/dan rankings. After the Japanese Meiji revolution the
game popularity would receive a serious hit, and again with the advent of World
War II. In Korea and China however, it was rekindled and their players would come
to match their Japanese counterparts. Ever so slowly Go is also capturing the minds
of the rest of the world.

The game itself has suffered little changes since ancient times. The earlier forms
of Go appear to have used 17x17 boards, shifting to 19x19 by the 5th to 7th centuries.
The komidashi was also introduced only in the 1930s. This relative consistency has
facilitated the appreciation of older games.

This document will introduce Chinese rules because they are the most commonly
used for computer play, but the most popular among humans are Japanese rules,
which are significantly different.

2.2 Chinese rules

The game of Go is an abstract, deterministic, perfect information, adversarial, two-
player, turn-based game. The first player places a black stone on one of the 19x19
intersections of the board. The second player plays with white stones. The game
progresses with the players alternating in either placing a stone in an empty inter-
section, or passing their turn.

2.2. CHINESE RULES

ABCDEFGH ABCDETFGH
9 9 9 9
8 8 8 8
7 77 7
6 o 6 6 6
s o 5 s 5
4) 4 4 4
3 33 (cXd) 3
2 2 2 2
1 11 1
ABCDEFGH ABCDETFGH

Figure 2.1: Stones and liberties

A possible start of the game in 9x9 boards can be seen in Figure 2.1l To win the
game it is necessary to have the most territory, and to have the most territory it is
necessary for the players stones to remain on the board. The stones are removed
when they are captured by the opponent, and they are captured when their number
of liberties reaches zero. The liberties are the unique adjacent empty intersections
of a group of stones. Stone a pictured in Figure [2.1] has four liberties while stone b
only has three.

The right board shows a grou composed of stones ¢ and d, which has five
liberties, and a group with the single stone e, which only has one left. When a
group of stones only has one liberty it is said to be in atari — in risk of capture by
the opponent. Stone e doesn’t share liberties with other stones because it is not
connected by adjacency, only diagonally.

From this position we can say that the white player has a larger influence on the
bottom of the board, and this intuitive notion can be understood as it being more
likely for that area to belong to white, in the end of the game. Since groups of
adjacent stones of the same color also share the same fate, this document will use,

In Go literature the term group is often used to refer to loosely connected stones that are likely to
share the same fate; but are not necessarily connected by adjacency. When connected by adjacency
they are often called a string or chain. In Matilda we found the terms loose group and just group more
descriptive of these concepts.

6

2.2. CHINESE RULES

ABCDETFGHJ ABCDETFGHJ

= N W B~ 01O N 00 ©
()

= N W B~ 01O NN 00 ©

= N W B~ 01O N 00 ©

= N W B~ 01O N

ABCDETFGHJ ABCDETFGHJ

Figure 2.2: Life and death

for brevity, a single letter over a stone to signify the entire group.

If black was to capture by playing at f, and white had a stone already in g, then
white could retake at e and capture f back. The game would have returned to an
immediately prior state. This is prohibited by a rule called ko. The ko rule is spe-
cific to repetitions to the immediately previous state, but repetitions can happen to
states further past, when more stones are captured. The rule that prohibits these
repetitions is called superko.

In Figure [2.2] the group of stones a is in atari, but groups b and ¢ can also be
said to be dead. The terms dead or alive are used to refer to the possibility of stones
groups remaining on the board without a mistake from the opponent. Groups a,
b and c cannot ensure at least two liberties with which to survive. Group d may
appear to be dead, since it is almost surrounded, but by playing out the game it
can be seen black can capture group c first, ensuring it doesn’t have a shortage of
liberties. Notice that groups on the border of the board have naturally less liberties.
This can be used both for offense and defense.

In the right board a possible followup is shown. If black group d is threatened,
it can be made safe by playing e (making one more liberty) — white cannot retake at
f because of the ko rule — and then by playing g, capturing both groups ¢ and h.

When the players are satisfied they can choose to pass, and agree to end the
game. At this point the scoring phase begins, which starts by identifying groups of

7

2.2. CHINESE RULES

ABCDEFGHJ ABCDETFGHJ

)00 0000«

e° %os**
OO0

@tﬁ#&.’ty
A T@I

ABCDEFGHJ ABCDETFGHJ

= N W s 01O N 00 O
= N W s~ 01O N 00 O
= N W B~ 01O N 00 ©
= N W s~ 01O NN 00 ©

Figure 2.3: Scoring

stones that are dead, and removing them. Figure 2.3] shows group a, which is dead
because white can play first b and then capture with ¢. White playing first at c is
illegal because it would be a suicide. A play can’t be a capture and a suicide at the
same time, since a capture frees at least one liberty. Captures have priority over
testing for suicide.

After removing the dead groups we count the number of stones in the board plus
the intersections that they encircle. This is represented in the right board. Black has
48 intersections and white has 33, black wins by 15 points.

To compensate the white player, who started second, it is customary to award
her extra points. This is called the komidashi — komi for short — and is usually 5.5 or
7.5 points. The fractional part, when present, is used to ensure the game does not
end in a draw.

Having understood how to establish territory and capture stones, let’s move on
to a 19x19 board. Figure 2.4 will be used to explain eye shape. Play in 19x19
usually starts in the corners, then moving towards the sides and finally to the center
of the board. Being close to the sides is advantageous because it is easier to apply
influence over that territory, since the border also acts as stones for either color.
The areas marked a, b and c¢ all contain four intersections, yet it took very different
amounts of stones by black to surround them.

These areas, in the context of providing liberties to a group, are called its eye

2.2. CHINESE RULES

)

x
@

)@ -

) ®—

ABCDEFGHJKLMNDO

+++4
08I0, o #%
2000

+

Figure 2.4: Eye shapes

CCCCQ
SSRES cwswee

PQRST

2.2. CHINESE RULES

shapes. Some eye shapes are able to guarantee life by providing untakeable liberties,
others are guaranteed to be dead, and finally others are disputed — they depend on
nakade to form what is called eyes. Eyes are single empty intersections surrounded
by stones of the same player. If a group can secure two or more eyes, it is uncondi-
tionally alive, because the opponent needs two plays to capture the group and the
first play would be suicide. Figure [2.4] shows examples of eye shapes that are dead:
a, ¢,]l and m - they cannot make eyes without a mistake by the white player. b, g,
i, j, n and h are alive even if white plays first; black can always make at least two
eyes. d, e and k depend on good play from black and being her turn to play. There
are critical points which if missed by one player, can be played at by the opponent
to kill the group. For instance a play in intersection d either makes two eyes (played
by black) or makes it impossible to make eyes (played by white). These vital points
are nakade.

Plays aimed at increasing the number of liberties of a group, but which can be
put into atari again after; and whose group cannot escape being captured, are called
ladders. Figure[2.5shows a few examples of ladders, on the left of the board. Notice
how white can just pursue the white stones, step by step, until reaching the border
of the board. A group on a correctly read ladder can never live. Groups a, b, ¢
and d are all ladders and can be killed by white when they reach the border. It is
imperative for computers to be able to read ladders; following a ladder needlessly
can go on for many turns and decide the outcome of the match.

To the right of the board in the same figure is an example of seki — mutual life.
Seki is a situation where two opposing groups are alive because to move first would
mean the death of that players group. A play at either e or f would be followed
by an opponent play at the other intersection, capturing the group. In general two
plays where the first one forces the other are also said to be miai. When it isn’t
advantageous for either player to play, both players pass and the game may end
with empty intersections that do not benefit either player, if they are liberties of
groups in seki. Passing is always legal, there is no zugzwang in Go.

The above examples are naturally not representative of actual gameplay. In real
play the very first plays could be called the opening stage of the game and are often
at the corners. When players start clashing and threatening each others stones there
are usually already well studied, solid sequences of plays that can be followed called
joseki. A standard opening followed by a well known joseki is similar to a chess
opening, only longer.

When both players seem content with their positions in the corners and sides
they may attempt to secure the center of the board, and we are usually in the middle
game. At this point areas of influence begin to form and the players begin saving ko
threats. A ko threat is a forcing move — diverting a player from securing a position in
ko, at a turn where the player can’t take the ko back herself (because of the ko rule).

10

2.2. CHINESE RULES

ABCDEFGHIJIJIKLMNOPQRST

19 19
18 +.* e-f 18
17 ‘+ t** OO 17
5 | OO @) 16
15 (**+.+* 15
14 @00) ’ 14
13 Yook 13
12 b+ () 12
11 ¥ () T 11
10 E III+ o . 10
Z #4‘*** ~ 2
7 7
6 6
5 5
4 ° ® 4
3) 3
, ,
1 1

ABCDEFGHIJIKLMNOPQRST

Figure 2.5: Ladders and seki

11

2.2. CHINESE RULES

ABCDEFGHJ

= N W s~ 01O N 00 O

ABCDEFGHJ ABCDETFGHJ

Figure 2.6: Ko fighting

The player that has more ko threats (or more valuable ko threats) is better equipped
to settle ko fights in her favor; and ko fights often decide the life and death of whole
groups. Figure shows an example of a ko fight (left board). White just played
a and black cannot retake at the marked intersection yet. If she has a good enough
forcing move she could, in her next turn, recapture a. A possible continuation is
shown on the right board of Figure[2.6: 1 is a simple high importance forcing move;
white defends and this allows black to later capture group b. Figure [2.4] also showed
some forcing moves: b, g, h, i and j are eye shapes whose alive status demands a
response from black if attacked.

The ability to lead the game, instead of answering, can be critical to securing
points in the middle game, and ko threats or simply ignoring an opponents play —
tenuki — can be used for this.

When reaching the end game the board influences are almost settled, and the
players must secure their points, with caution to avoid making mistakes that cost
the life of entire groups of stones. Figure [2.7] shows a professional game in the end
game, turn 182. Professional play may look overwhelming. Notice how the groups,
both the alive and dead, are not exaggeratedly defended or attacked.

When the game is played by players of too big a difference in skill it is customary
for the stronger player to have a handicap. This handicap is usually either starting as
white without komi or starting as white but with the weaker player having already

12

2.2. CHINESE RULES

I S S O e G T = T — N TSy
O O = N W &~ O &0 N o ©

= N W B~ 1O N

ABCDEFGHIJIJIKLMNOPQRST

O |

e | -

) * I‘* 14

0’0 %% ¢ %%

0see .

3,

e - Sell
e -

nd ‘* @ ‘+ 6

() 5

Yo |

© 0008 |

° SUNUANY- + o0 0 I

ABCDEFGHIJIKLMNOPQRST

Figure 2.7: Shusaku (B) x Genan, Japan 1846

13

2.3. COMPUTER GO

placed a number of handicap stones in the board. This number usually does not
exceed nine stones. As a handicap, the stronger player may also be given less time
to think if the match is timed.

Technically, what was introduced before was Tromp-Taylor’s concise rules [TT95]]
without suicides; or Chinese rules with simple positional superko and without liber-
ties of groups in seki counting for the score. Different rule sets exist today with
the Japanese being the most popular. Chinese rules however are more practical for
computer players, and will be used exclusively in this work.

2.3 Computer Go

Computer Go is the general term used for the work around computer programs at-
tempting to play or understand Go. It is a field of artificial intelligence that borrows
much from attempts to tackle other perfect information games. The greatest diffi-
culty in Go arises from the exponential complexity of the possible game states, result
of the size of the board (19x19 or even larger).

Table 2.l makes evident the complexity growth with board size [[TFO7], for the
most commonly used board sizes. Professional players seldom play boards other than
19x19 though, and computer programs usually play more turns to resolve scoring
disputes that would be apparent to humans.

As of 2016 the number of legal positions has been solved for all boards 19x19
and smaller [[Tro16]].

Traditional search methods that attempt to search all possible states have proven
ineffective at playing high quality Go, as have pure pattern based approaches. This
due to its complexity, that translates into a prohibitively large branching factor over
a game that can be several hundreds of plays long — requiring both short and long
term planning.

Modern computer Go software usually features a set of elements:

1. Compilations of openings and joseki are tested to avoid having to exhaust the
time limit on the beginning of the match.

Board size | Intersections | Legal positions | Game length (avg.)
9x9 81 10% 45

13x13 169 3.7 x 10% 90

19x19 361 2 x 10172 200

Table 2.1: Game variables by board size

14

2.4. TECHNIQUES FOR COMPUTER GO

2. Some form of game state search coupled with tactical analysis. The tacti-
cal analysis may be through the use of automated learning systems, previ-
ously compiled knowledge (like handcrafted patterns or rules), programmatic
checks or through the simulation of gameplay with branching limitations. The
game state search attempts to overcome the limitations and biases of the other
methods by providing a more broad strategical feeling for the game, whereas
tactical analysis are local and reward driven, which is not useful by itself for
problems such as Go.

In the past more attention was given to the tactical analysis, with few programs
performing full whole board searches. Different levels of decision systems would
try to reduce the actual exhaustive search to a minimum. This method of computer
Go programming would prove very difficult and required a Go expert developer. It
was also not uncommon for humans to discover and exploit specific difficulties the
programs had.

Today a computer Go program is often smaller thanks to It uses as much
previously generated knowledge as possible to reduce the complexity of the game
tree or better simulate the game, invariably introducing a local optima (which would
always be present unless the search is exhaustive) and then tries to refine it'’s chosen
play given the time available. The solution presented in this document will not
deviate from this general formula.

2.4 Techniques for computer Go

This section attempts the herculean task of identifying the major technical contribu-
tions to computer Go in the last decades. While this pertains specifically to Go, or
was demonstrated in Go, research on other areas of course has also played a major
role. This section is also restricted to techniques that benefit the playing strength of
a computer Go program — computer Go research is not restricted to this competitive
approach.

The first program to tackle the whole game of Go was written in the late 1960s [Zob70]].
Itintroduced ideas that would later be developed in the programs for several decades,
like codifying Go proverbs as criteria for tactical analysis, feature extraction for pat-
tern matching and the efficient hashing of game positions.

In 1987 Anders Kierulf formalizes a file format for exchanging Go records (and
compatible games) —|[Smart Go Format (SGF)|

A program first competed in a human Go tournament in the 1980s. In the late
1980s GNU Go is started and in 1990 it would introduce finite automata for pattern
matching. In 1993 the work on program Explorer produces research around position

15

2.4. TECHNIQUES FOR COMPUTER GO

evaluation and solving difficult sub-problems. Its author would also go on to update
and extending [SGF| renaming it Smart Game Format.

In 1993, the first ideas of using [Monte Carlo (MC)| methods for Go were pro-
posed. Bruegman goes on to experiment with non-random simulations [Bru93]].

NeuroGo [[Enz03[] in 1996 and Honte [Dah99]] in 1999 would integrate trained
in a more classical solution for the time. The networks were trained through
temporal difference learning (TD), to identify the influence of the players over the
board (the likelihood of ownership of each intersection). This was applied to 9x9.
Around the same time the method|Symbiotic Adaptive Neuro-Evolution (SANE)|was
invented for evolution of networks for tasks not suited for reinforcement learning
methods. [SANE] and evolutions of it would be successfully applied to Go in 5x5, 7x7
and 9x9 boards in the next years.

Around the turn of the century the first protocol for computers playing Go —
Go Modem Protocol — was created. It was a binary protocol and would be mostly
replaced by the [Go Text Protocol (GTP)| when it was released by the team behind
GNU Go, almost a decade later.

In 2002 however, a policy for the problem of multi-armed problems that reduces
its expected regret was published. This would lead to the beginning of the use of
Monte Carlo simulations for Go. In 2003 the program Indigo would first experiment
with Monte Carlo searches, but still in the context of a more classical architecture at
the time. In 2005 it would apply research on Bayesian generation of 3x3 patterns to
guide the simulations and would win its first tournament. Also in 2005 Crazy Stone
started using a Monte Carlo tree search, followed by MoGo.

In 2006 MoGo would demonstrate the strength of simple handcrafted patterns
in the playout phase of [Upper Confidence Bounds for trees (UCT)| was also
introduced in MoGo and was a vast improvement over plain Since then work
on computer Go has shifted heavily towards programs, with a focus on im-
proving pattern matching, usually with automated learning; improving information
sharing in the game tree; and improving [MCTJ| itself with a focus on high par-
allelization. MoGo would also benefit from research in TD made for RLGO [[SMO07]].

In 2003 the [All-Moves-As-First (AMAF)| heuristic is introduced [[BHO3[], and in
2009 it is improved by|Rapid Action Value Estimation (RAVE)| reducing the expected
error from the use of AMAF| sampling. The notion of criticality would also be born
as a biasing method towards the exploration of intersections with a high covariance
with winning the game.

In 2004 Eric van der Werf would explore machine learning techniques for tasks
other than just move prediction [vdWO04]]. He would also solve the game for 5x5
boards.

In 2010 contextual [MC and nested are published, as well as Last-Good-Reply
with Forgetting [BD10], which is an advancement of Last Good Reply from 2009.

16

2.4. TECHNIQUES FOR COMPUTER GO

Rémi Coulom would later successfully explore new methods for parameter tuning
of playout policies for [Cou07,HCLIO]. Such techniques are used today in
the strongest programs, like Zen and Crazy Stone. Both these games would go on
to defeat 9p (professional dan) players with four stones handicap in 2012 and 2013
respectively.

In 2011 Petr Baudi$ would explore forms of situational compensation in Pachi,
and introduce liberty maps and a definition for the horizon effect [Baulll].

In 2014, two teams [[CS14,MHSS14]] independently applied to Go, origi-
nally at predicting professional play in game records. Maddison et al. also perform
the first experiments on integrating with [MHSS14]], with promising
results. These findings catapulted to the front of computer Go efforts.

Working for Facebook Al Research Yuandong et al. announced their own research
into the application of with for Go [[TZ15]], with their first publication
exploring the prediction of more than just the next move. Their program written
from scratch would start competing in online tournaments in 2016.

In early 2016 it also became known that a team from Google had produced a
program — AlphaGo - that for the first time defeated a professional player without
handicap (Fan Hui 2p in October 2015). It used different for reducing the
candidate plays and then suggesting the next play, in the context of [Seal6l].
In March the program went on to convincingly defeat Lee Sedol 9p — arguably one
of the strongest living players.

Research into computer Go enjoys an honest, open discussion online, but has
a great majority of computer programs being closed source. Although the general
algorithms might be known, what makes the very best programs the best remains in
many cases a trade secret. The best free software programs are significantly weaker
than their proprietary counterparts as of 2016.

17

Chapter

Solution

3.1 Model

When speaking of computers playing Go it is intuitive to place greater importance
in the part that selects the next move, in the context of a game. This section instead
starts with a top-down approach.

From the perspective of Matilda it functions as a server in a client-server ar-
chitecture. The client issues commands that the server fulfills, mostly without the
possibility for negotiation. The server keeps a context that includes a Go game rep-
resentation, time control settings and other minor state. Matilda has a single context
and the same instance cannot be used to play in multiple games at once. This ar-
chitecture moves responsibility from the server agent to the client. This relationship
is also asymmetrical; two computer programs of this model cannot communicate
directly.

The client in this relationship is a game controller program. In the simplest form,
Matilda can play with humans and be its own controller program. This is not very
user friendly. A common alternative is to use a separate program for user input and
display. This program usually relays the user input to advance the game, controls
the time and ensures both players are satisfying the rules.

For computer versus computer play the client takes a form of mediator between
the programs, often even geographically distant.

Because of this shift in responsibility a computer Go program can be mainly con-
cerned with requests to play — where given its internal representation of the game,
that it keeps up to date, it applies a series of techniques to decide its next move.
In Figure 3.1l the communication details of how the commands are exchanged, and
therefore if the actor is a program or human being, are omitted.

Most competitive programs, and itself — the protocol most commonly used

19

3.1. MODEL

Play request N2 .
. /&Command interpreter)

(Select Strategies

g

@M <<datastore>>
Game Context

(Execute Strategies lé

State Evaluation

(] { Select Pla
O Reply with play | y)

or resignation

(Update Game Context}

. <<datastore>>
Execute strategy in Strat
opponents time rategy

specific data

New command

®< (Perform between
Uurns maintenance

Figure 3.1: Activity diagram for play requests

20

3.2. STATE SPACE SEARCH

for Go — are tailored for this use. A request to play in Matilda invokes a short pipeline
of instructions. First, transformations may be operated on the state, such as color
changes and symmetry operations. Then an opening book and other techniques
are invoked. If they satisfy the request, i.e. can immediately provide an answer of
satisfying quality, then the request is complete. If not the process continues to the
default play selection strategy, which in Matilda is

as a protocol has its quirks. It is not solely meant for competitive play.
It supports asking the computer to repeatedly play in a row, analyzing positions
without actually playing, having the same program play as both players, etc; so it
may become confusing for a program to manage its internal state. To make it easier
for Matilda to know when it can safely free resources an optional flag is used. It
reduces the scope of the protocol for competitive play by informing it will play in a
contest between two distinct players, alternating colors.

Before a request to play starts a the context of the game is used to decide
the amount of time it should run, taking into consideration the time system used and
network latency. [MCTS|will perform as many simulations as possible in that amount
of time. After the execution of or other strategies, a full board outlook is sent
back.

It is then used to select the actual play selected, because the best rated play may
be illegal: the state evaluation strategies don’t have a full match context, and it is
necessary to detect superkos. Methods of dealing with superkos vary from program
to program, but in general their detection is usually lax in [MCTSL

After replying with the selected play, in a competitive setting, it is the opponents
turn to think. This gives the program plenty of time to perform maintenance or polish
its previous decisions, which it does. The program keeps polling for new commands
while extending the (if it was the strategy previously used), thus preparing
itself already for the next turn. This preparation relies on the fact that builds
a large amount of knowledge about part of the game tree, and the more time it has
the more accurate its information.

Other program functionality, like manipulating game records, calculating
the score and analyzing the current game position is also started from the com-
mands that invoke specialized routines. Because there is little decision making from
Matilda the underlying source code is organized in a very flat way, with the exception
of related code.

3.2 State space search

The terms state and state space have already been used in this document. These are
used to abstract the game of Go to a problem pieced together with states, which con-
stitute what the system can be at a given time, and transitions, that constitute how

21

3.3. MONTE CARLO SEARCHES

the states can evolve from one to another. A state for the purpose of representing a
match of Go must therefore contain all game information necessary for intelligent
play — like where the stones are and who is playing. Since this is an abstract repre-
sentation we can reduce it if we ignore or abstract parts of the problem. For instance
if a problem is made of smaller, independent problems and we want to only solve a
particular subset of them at a time.

The transition between states is usually done based on rules, in this case the rules
of legal play in the game of Go. Transitions are directed which means a directed
graph can be constructed of the states and their transitions. This further means that
from the perspective of a specific, initial state, we can construct a tree structure from
the transitions possible at each state.

We make the distinction between game tree — the abstract directed graph of pos-
sible game states — and search tree — the tree like structure that may be physically
built (at least on the stack) during an algorithmic search. This tree is acyclic if it
detects and prevents state repetitions.

A state space search algorithm in general attempts to navigate the state space in
an efficient way. In this we can have many objectives: if for the purpose of aiding a
Global Positioning System for traveling, for instance, we would want to find the path
from the top of the tree to a specific leaf that is expected to best fit some criteria,
like distance or time traveled.

In Go we do not have a particular target leaf to obtain, we instead look to win the
match or maximize the score in our favor. Since Go is a zero-sum game the opponent
is expected to do the same and one of the players advantage means the disaster of
her opponent.

A state space search unfortunately grows exponentially larger with the number
of possible transitions at each leaf state. An average match of Go lasts about 200
turns (more for computers playing with Chinese rules) and uses a board of 361
intersections, realistically with 2 x 1072 valid Go states [[AlI94] and a branching
factor of about 250 [[TF07]]. In essence, while a number of algorithms have been
invented to search space states efficiently, not one is applicable to a space as vast
as this. State space search algorithms however can still be used for local problems,
with drastically reduced branching options.

3.3 Monte Carlo searches

A Monte Carlo planning algorithm considers a[Markov Decision Problem (MDP)|state
space, where we learn the reward distribution — and therefore best transition for the
player, by random sampling. Each sample consists in navigating the space until a ter-
mination criteria, and registering the outcomes of each first transition of the sample.
After a satisfying amount of samples, we select the transition with higher average

22

3.3. MONTE CARLO SEARCHES

outcome.

This simple algorithm features very low spatial requirements, is highly paral-
lelizable and works well in simple It is too simple for Go, because the reward
distributions are different at each state and we are solving an adversarial problem.
With reinforcement learning however, we can have a algorithm that can learn
the best solutions (sequences of transitions) by storing the past sample outcomes at
each state.

This is called Monte Carlo tree search and has been a focal point of competitive
computer Go in the last decade. In we are learning the approximation of a
function - in this case the function of match outcome as the product of playing —
for more problem states than the current one. We are not searching for the exact
best sequence of plays to victory, which is unfeasible in problems such as Go, but are
aiming at the play that will minimize our loss.

The algorithm is usually divided in four steps, performed repeatedly:

1. Selection — From the initial state select and traverse valid transitions until a
new state is found.

2. Expansion — Generate the new state.

3. Playout — Randomly play the game until the end from the current state, yield-
ing a playout outcome (win or loss).

4. Propagation — Propagate the playout outcome across the sequence of states
that led to the expanded new state, updating their estimated state quality.

These four steps are illustrated in Figure 3.2l So far this simple algorithm is
purely observational and random, but it can be improved by directing parts of the
search for faster convergence with the real reward distributions.

3.3.1 Guiding Monte Carlo tree searches

In attempting to reduce the regret of our Monte Carlo sampling we have a problem
of exploration versus exploitation. The [Upper Confidence Bounds (UCB)| policy for-
mula was initially introduced for the well studied problem of the multi-armed bandit
A multi-armed bandit is some hypothetical gambling machine with a number
of buttons, or levers. The gambler will try to produce information about the best
levers to pull and will be faced, after an initial more random (exploratory) phase of
play, with an exploration versus exploitation dilemma.

The[UCBlformula itself has a few versions and modifications by different authors,
but all variations include selecting the transition that maximizes a combination of the
times that transition has been tested, the number of victories (hence the expected

23

3.3. MONTE CARLO SEARCHES

1. Selection Phase 2. Expansion Phase

a7 a7

/ [\

0/1 0/1 0/1 111 011

2/3/0/1 1/2 2/3 0N 1/2
7

{

0/0

3. Playout Phase
4/7 4. Propagation Phase

/ 4/8
2/3 01 1/2
/ \ 2/4 0/1 1/2

0/1 0/1

0/1 11 0/1 / !
1/2

o/

Figure 3.2: One simulation in MCTS with wins/visits

24

3.3. MONTE CARLO SEARCHES

reward) and the total number of plays. Auer et al. [[AFK02]] introduce UCB1 and
variants, and compare them with e-greedy policies.
Under UCBI1, at each selection phase we choose the transition that maximizes

Xt/ = M“” where x is the current machine we are considering, x; the average reward
for playlng at i, n; the number of plays made at i and n the total number of plays
done overall.

The best policy empirically found was an extension of UCB1, called UCB1-TUNED.
Both UCB1 and UCB1-TUNED were implemented in this work.

The adversarial multi-armed bandit problem is a variant of the problem where
the reward distribution varies for the same state depending on the observer (own
player or adversary, in two-player games).

In this new formulation of the problem we need our guiding policy to either min-
imize or maximize the expected reward, depending on the playing player, for each
turn, in a manner similar to the minimax algorithm. The minimax family of state
space search algorithms attempts to efficiently prune parts of the search tree based
on the previously best observed paths (highest minimum reward). It is pessimistic
for assuming good play from the opponent. Since Go is a zero-sum game we need
to programmatically invert the reward when at the opponents turn. An exception to
this is in situations where a play is only valid for one of the players, which is possible
in Go.

3.3.2 Upper confidence bounds for trees

The requirement for the application of any guiding policy for trees is storing statistics
about the playout outcomes in every node of the game tree, instead of only the first
one. In comparison to the multi-armed bandit, this is exemplified as rows after rows
of machines, with distinct reward distributions, with rules for the transition between
them.

[UCT] (also known as UCTO or UCT-T) is thus a policy for multi-level multi armed
bandit problems that unites the use of with the application of [UCBI at each
transition selection of the selection phase. UCT1 includes the use of transposition
tables (also known as UCT+T). UCT2 takes into consideration that, although the
game of Go is a perfect information problem, the states that are used in-game may
not be perfect — for performance reasons they may not include the information nec-
essary to identify kos and superkos. Because of this, in UCT2, an estimate of the
average value is used instead of the actual value in the saved state.

Bellow is shown a summary of the [UCT] policies described above. Using the same
terminology as [[CBKO8]], I”(t) denotes the choice of transition in the tth simulation,
to be applied at state s using policy name 7. A(s) denotes the set of valid transitions
from state s, Q,(t) the average outcome of playouts from state s, and Q, ,(t) the

25

3.3. MONTE CARLO SEARCHES

c Win rate | Games
0.7 | 52% 490
1.1 58.1% 903
1.15 | 59.4% 1086
1.2 | 58.4% 476
1.3 | 55.1% 748

Table 3.1: Win rate by UCB c constant

average outcome of the application of transition a at state s. Conversely N,(t) and
N; ,(t) are the number of times state s has been visited, and the number of times
transition a has been selected at s, respectively.

17670t +1) = 17T (¢ + 1) = argmax(Q, o(t) + iy, () (3.1)
a€A(s)
ISUCTZ(t +]_) = argl’(l?X(Qg(s,a)(t) + CNs(t):Ns,a(t)) (32)
a S

Where c, ,, is the bias part of the formula, which is shown again next for the
UCB1 and UCB1-TUNED variants. Q, q) is an estimate based on at least Q; ,.

ngBl _ 2xInn (33)
g m
UCB1-TUNED Inn e
cUe = \| — x min{-,V, ,(n,m)} (3.4)
’ m 4 ~
with V, ,(n,m) the estimated variance of the UCB1 upper bound:
V _ 1 = Xz 2 UCB1 3 5
s,a(n’ m) - (; X s,a,T) - Qs,a + Cn,m (’)

=1

WhereX, , . is the Tth reward obtained from transition a in state s, and Q, , = X, ,
as stated before. This is, in essence, very similar to the variance formula for random
distributions of finite populations. If we are considering playout outcome values as
1 (win) or O (loss) then % X ZTZIX ia,f is also equivalent to Q; ,.

The impact of the UCB bias contribution (as product of the ¢ constant) is shown
in Table for different values of c¢. These results are from an older version of

Matilda, playing against GNU Go in 9x9 with 10000 simulations per move.

26

3.3. MONTE CARLO SEARCHES

Transition selection using UCB1 can also be improved by simplifying the square
root and calculating the numerator only once for every selection phase:

UCB1 _ 2 x InN; _ v/ 2 xInN;

N; N,

s,a

c (3.6)

With 4/2 x In N, precalculated for low values of N;.

As already hinted, we will need to store state statistics in some kind of structure,
preferably that allows the detection of transpositions. A transposition is merely a
state that can be arrived at via different paths in the state space, and because the
Go board has natural symmetries, we can treat symmetric states as transpositions as
well.

When a state has not been visited yet it is given infinite priority in [UCTl This is
naturally not desirable since it produces a kind of breadth first search. A few ways
of dealing with this problem exist:

1. First play urgency — perhaps the simplest of the methods. We apply a fixed
value threshold for preferring a selected state instead of a yet to visit state.
The value may be context based.

2. Progressive widening — where the number of possible states to consider widens
with the number of visits to the parent state.

3. Progressive bias — an external algorithm is used to initiate the statistics of not
yet visited states. It is called progressive because it’s impact in the early simu-
lations is lessened over time.

Most based Go programs use a progressive bias selection with states ini-
tialized via domain-specific heuristics.

Regardless of the conceptual formulation of [UCT] the underlying structure need
not be an actual tree, nor its nodes merely hold the quality of a game state.

3.3.3 UCT with transposition tables

[Upper Confidence Bounds for trees with transpositions table (UCT+T)| algorithms
try to minimize the space required for the search, as well as have it converge faster
to the best solution, through the detection of transpositions. Some programs also
treat different but similar states as transpositions under the assumption that very
similar states will have somewhat similar outcomes.

A game state with no context of the whole game (and thus unable to be used
to detect superkos) can be represented in vector or exhaustive form. Vector form is

27

3.3. MONTE CARLO SEARCHES

usually preferred for humans when also representing the flow of a game. When con-
cerned only with the current state of the match an exhaustive form is usually easier
to recognize. For a computer it is also easier to manipulate, which makes exhaus-
tive representations dominant in the most performance critical parts of computer Go
programs.

Vector based representations however have interesting properties that are worth
investigating. It can be noticed that all plays between the start of the game, a capture
or a pass can be reordered without loss of generality, which can be used for detection
of transpositions in a tree based structure. This can hint to the use of a graph of
captures and passes, with each node composed of sets of plays to be played in any
order.

3.3.4 All-Moves-As-First

The currently best computer Go programs use an improvement on called
[RAVE], which is the logical next step from AMAF.

In at the end of a playout, we start the back propagation of the playout
outcome, updating the statistics (wins and losses) pertaining to the specific transi-
tions that were part of the sequence of plays simulated. It is easy to imagine that,
while this will quickly cover the possible states and transitions in the first few plies
of the game tree, most deeper transitions will go seldom visited.

With [AMAF| we keep a different group of statistics of the transitions of all the
sequences that followed after the current state that were played by the current player,
therefore disregarding the state that actually originated them. This strategy works
under the assumption that, while plays played at different turns may have drastically
different outcomes, they still are biased to the expected outcome from Monte Carlo
simulations.

Furthermore the statistics are also kept from the random playout phase, where
a lot of transitions, if not all, are visited. This means we can potentially gather out-
comes for all 19x19 transitions and update all the states in the simulation sequence.
Algorithmically we are using the same, perhaps recursive, method of traversing the
tree from [MCTS] and being able to update nodes without the extra work of looking
up transpositions or recording the relationship between states.

Since captures may happen, the same board position can be played at by both
players. Petr Baudis [Baulll] suggested only updating the AMAF information for the
player that first played there, since the value of this information decreases with the
distance from the state.

Having recorded the wins and losses for transitions from children moves, we can
adjust our selection policy to guide the search not only based on the Monte Carlo
outcomes but also [AMAF| outcomes. As introduced previously the UCT1 selection

28

3.3. MONTE CARLO SEARCHES

policy is as follows, where Q , is the average of the outcome of the playouts following
transition a from state s, and c, ,, the exploration vs exploitation bias parameter of

[UCBL

17¢"1(t + 1) = argmax(Q, ,(t) + CNL(ON; o)) (3.7)

a€A(s)
In the adopted[AMAF|variant, a-AMAEF, we now have a weighted average between
the outcomes and the ones obtained via AMAF| propagation, Q*4", derived

in the same fashion. We call this weighted average Q*_*M":

QU AMAF — o x foAF +(1—a)xQ,, (3.8)

s,a

The constant a is the bias between the and [AMAF] outcomes and can be
arrived at empirically. We are, however, attributing the same weight to both sources
of knowledge and [AMAF) regardless of how well explored the state is.
corrects this by dynamically selecting the value of a.

3.3.5 Rapid Action Value Estimation

In the objective is to select a factor 3, , = a for each state transition based
on our confidence on the amount of information gathered. A state that has been
visited a lot should have enough information for us to trust the playout outcomes. A
state that has seldom been visited however has little information if not for the shared
[AMAF statistics.

What we refer here as is called in some sources MC-RAVE, calling
the simple application of a-AMAE, with[AMAF|not differentiating outcomes obtained
from playouts from [AMAF| from AMAF sampling.

Bs .. was derived by Gelly and Silver [[GS11]] to be, under the assumption that the
game is even:

AMAF

s,a
= 2 3.9
P N, , +NAMAF 44 x N, . x NAMAF x b2 (39

With b now being a constant not dependent on the state or transition. In Matilda
the value of b was arrived at empirically. Some testing can be seen in Figure [3.3] for
9x9 boards. All things staying the same we need to update our [UCT| formula to
reflect the use of the a-AMAF outcome average instead of just playout outcomes.

[AMAF]contributions are taken into consideration regardless of the depth they are
found, relative to the state being updated. This is naturally not optimal, since the
impact of a move made the next turn is more likely to be accurate than one made
one hundred turns later.

29

3.3. MONTE CARLO SEARCHES

0.500
0.480
0.460
0.440

0.420 4]

0.400
0.380

0.360

T T T T
0 2 4 6 8 10

Figure 3.3: Win rate by MSE b constant

Some programs deal with this by limiting the contribution of[AMAFItraversions to
a certain maximum depth; or until a capture occurs. Matilda instead uses a method
of contribution smoothing. Originally the AMAF| quality Q}/*" is the average of the
outcomes gathered via[AMAF (first played by the player in a subsequent state to the
current one). In Matilda Equation is used for each update instead, favoring
closer AMAEF| samples.

¢ =1—tanh(d/D) (3.10)
NAMAF NAMAF 49 (3.11)
z —QMAF
QU — QA e x —a (3.12)
s,a

Where d is the depth the state was found relative to the state with the[AMAF value
being updated, and D is an empirically tuned confidence factor — of the confidence
of [AMAF contributions depending on their distance to a state. c is therefore the
confidence on outcome z. The impact of this modification, according to constant
D, is shown in Table to be not yet evident in tests run in 9x9. Note the default
behavior is equivalent to D = 0.

30

3.3. MONTE CARLO SEARCHES

D | Win rate | Games
8 |41.8% 3427
10 | 43.1% 3984
11 | 42.2% 3540
12 | 42.5% 3736
14 | 41.8% 3427
15 | 42.2% 3246

Table 3.2: Win rate by D constant

3.3.6 Further MCTS improvements

Heuristic MC-RAVE

When using domain knowledge to initiate the state information, for instance as pro-
gressive bias, the [AMAF] statistics should also be initiated. When these statistics
are initialized from the statistics they are called by Gelly and Silver Heuristic
MC-RAVE [GS11]]. It is argued that Heuristic MC-RAVE may replace the use of an
exploration-exploitation bias altogether (thus the acronym [MC|instead of[UCT]), and
this is done in programs like MoGo and Pachi. Empirically, we still obtained better
results using both the term and

The statistics can be initiated by a function of measure of simulation equiv-
alence: the number of wins or losses suggested to be equivalent to the confidence
on the feature quality. These functions are usually learned for a great number of
simple, tactical features — such as a play being a capture, or the number of liberties
the resulting group has.

Virtual loss

When is parallelized with many worker threads sharing the game tree, and
the and [AMAF]| qualities are only updated after the playout phase, it often suffers
from different threads following the exact same transitions before their quality hav-
ing been updated. A technique to prevent this and instead promote exploration of
another branches consists in adding a virtual loss to each state prior to continuing
the simulation. This virtual loss is later corrected if the playout was actually won.
Using transition qualities and visit counts instead of wins and losses, we need to
modify the state update method from [I[GS11]] to incorporate the virtual loss. This is
done by performing Equations and before continuing the search. When
returning from the playout during the propagation of the simulation outcome we

31

3.3. MONTE CARLO SEARCHES

execute Equation [3.15] Notice the current value of N; , is used.

N, <N, +1 (3.13)
Qs q
- 3.14
Q0 < Qs q N, (3.14)
1
Qsq Qs+ N (3.15)

Horizon effect

If memory is short for the capability of the program to expand new states in the
current system, a strategy of delayed state expansion can also be used. It consists
in only expanding newly arrived at states after a certain amount of visits. If the
memory available is expected to run out in the middle of a single turn, this is an
attractive alternative to interrupting the search or falling into what has been coined
the horizon effect.

The horizon effect is an anomaly of sample based searches that do not have the
ability to refine the search past a certain point [Baulll]. Even though a sequence
of plays on average has a certain probability of positive outcome, it could be easily
refuted if we direct the search to the most promising plays. If we cannot then we are
essentially reinforcing our biases. The danger in doing this is in tree search poison-
ing, where an easily refutable position returns a high rate of success and erroneously
diverts the simulation of the rest of the game tree.

3.3.7 Play criticality

First described by Rémi Coulom and Seth Pellegrino, the notion of criticality refers
to biasing the exploration towards board intersections whose ownership correlates
highly with winning the match. This introduces the upkeep of a new group of statis-
tics, now on position ownership. Up to now we were keeping for each play/inter-
section the quality and number of visits, and the same for [AMAF. If we add
information on the ownership of intersections at the end of the playouts, and on the
relationship between ownership of the intersection and winning the match, we can
measure its criticality based on their covariance.

Petr Baudi$ introduced the application of criticality for progressive bias guid-
ing [Baulll] by incorporating it in the formula of the bias. First Coulom’s
criticality formula was rewritten to reduce the information necessary:

CPachi(S: Cl) — pst‘/(fnown _ (2 % Ps[:(llrown % Ps[:(llrwin _Pplrown _Pplrwin + 1) (316)

s,a s,a

32

3.3. MONTE CARLO SEARCHES

pwinown

Cpacni(s, @) is the criticality of intersection a from state s. is the probabil-
ity of the simulation winner owning the intersection. PSP(II”’W” the probability of the
player owning the intersection, and P? Irwin the probability of the player winning the

simulation. You'll notice Ppl””” is equ1valent to Q; , from[UCTL
The modified R formula from [Baull]] then complements f3 ,

NCRIT 1Cpacnil X N:’\i\/IAF (3.17)

N/AMAFHCRIT — NAMAF | CRIT (3.18)
NAMAF+CRIT

B, = (3.19)

N, o + NAMAF+CRIT 4 4 x N, , x NAMAF+CRIT x]2

And on the transition quality calculation it affects the AMAF] quality as well. We
are therefore inflating the quality of critical intersections to be owned by adding
virtual wins, and adding losses to stable intersections. We use wins/visits instead of
precalculated qualities for AMAF, and techniques based on biasing through [AMAF,
because of the performance cost of calculating weighted averages. W, , is therefore
the observed number of wins from following transition a from state s.

CRIT
WCRIT — Ns,a fOI' CPac.hi(sa a) > O (320)
54 0 otherwise
AMAF+CRIT WSAcIIVIAF + WCRIT
Qs’a - NAMAF+CRIT (3.21)
s,a
QMVE = B, x QMMAFCRIT 4 (1B,) x Q,, (3.22)

The use of crit1ca11ty by Petr Baudi$ was also bound by a minimum number of
visits, chosen empirically [Baulll].

3.3.8 Play effectivity

Also by Petr Baudi$ the idea of play effectivity is explored, as the likelihood of a
play being successful measured by the stone remaining on the board and making its
neighbor intersections also belong to the player - its local value [Baulll].

Apparently for performance reasons using play effectivity as a biasing method is
not performed in Pachi. In Matilda the primitives developed for state manipulation
produce little overhead for effectivity biasing, and it was therefore experimented
with.

33

3.3. MONTE CARLO SEARCHES

Of the methods investigated for incorporating play effectivity a similar one to
the previous method for criticality was found best. We modify the [AMAT statistics
and consequently the [RAVE] biasing and quality of the transitions via [AMAFL The
definition of local value from Pachi was lightly modified to:

N
1
lvalues’a — 5 X pspcllmWn Z plrown (3.23)

s,ap,

With PP”"W” the probability of the player owning intersection a and the end of

the game from state s, and PP“"W” the probability of owning neighbor intersection n.
N is the total number of ne1ghbor intersections (plays near the border of the board
have less neighbors).

The [AMAF values can then be updated in a similar way to the use of criticality:

1
NP =cx|lvalue,, — §| x NAAT (3.24)

s,a

NAMAF+CRIT+E _ NSA;I\I/IAF+CRIT + NE (3.25)

AMAF CRIT E
VVs,a + Vvs,a + Ns,a

for lvalue, > 0

AMAF+CRIT+E N FCRIT+E
+ + s,a
Q = AMAF CRIT (3.26)
S,a W W
2 i e otherwise
NAMAF+CRIT+E
s,a

With ¢ some constant for tuning the contribution to Alternatively
schedule constant b can be tuned instead.

After experimenting with several definitions of point local value and integration
with RAVE|we were unable to produce positive results in 9x9. The above description
produced the best results observed. To notice is that the accuracy of play effectivity
is lessened by the fact that real simulations may not end with the board full, and
the detection of eyes for the purpose of [value calculation was not performed. For
convenience our experiments also used the same limit on minimum number of
samples for effectivity and criticality, but there is no basis for their relationship.

3.3.9 Last Good Reply with Forgetting

[Last-Good-Reply with Forgetting (LGRF)| is an improvement for that works
surprisingly well [BD10]. A Last-Good-Reply policy (LGR) follows the last reply of
the opponent that brought her a win after the current play selected: if in state s; we
opt for play a,, and the last time we followed a; we lost, then we have kept a good

34

3.3. MONTE CARLO SEARCHES

reply a, by the opponent that can be followed. We can extend this to include more
than the last transition as discriminant for reply a,.

The act of forgetting (LGRF) then adds that if a reply a, was actually poor, it
is cleared, and the default transition selection policy is used instead when we later
follow transition s;,a,. Exploration is not harmed since for a sequence that brought
victory to one player, the other one’s plays are forgotten.

Let’s consider an example applied in Go: for (s;, a;) meaning transition j played
in state i by the black (B) or white (W) player 6.

In a simulation with plays B(s;,a;), W(sy,a,), B(ss,as), W(s,,a,) resulting in a
victory for white, transition B(s;,a;) would save or update a, as best reply, and
B(s5,a;) would save a,. All other replies would be left unchanged in simple LGR. In
[LGRF, W (s,,a,) and W(s,, a,) would clear their replies (if they have any).

Besides being inexpensive by avoiding performing transition selection computa-
tions in some states, experimentally achieves good results with a fixed number
of simulations. It also adds little memory overhead since for each play we only store
one reply.

3.3.10 Dynamic komi

The[MCTSl|algorithm has a big weakness related to extreme situations: when the cur-
rent state of the match favors one player in particular, the great majority of playouts
will either be very positive or very negative. Since the outcome of a playout is only
in terms of winning or losing, a naive implementation might give up on uphill
battles and ease up on favoring positions. Strong players often do not make big risks
if they know of a safe way to victory; but programs may take this one step too
far — being satisfied with a 0.5 points victory — and a small error in its estimates can
turn the game around. This is surprisingly prevalent in programs.

There are a few possible solutions to this. Typical alternatives to just wins and
losses are taking into consideration the score difference or playout depth. Another
solution can be a form of situational compensation, that attempts to even the sim-
ulation outcomes by observing past outcomes. One of the ways to accomplish this
is with a shift of the board evaluation function; modifying the reward distribution.
This method was called dynamic komi because the komi is a constant in the typical
board evaluation function that can be easily adjusted.

This method was first discussed in the computer-go mailing list, and elaborated
upon in Pachi [Baulll]]. Most important was the conclusion that mixing and
[AMAF values from before and after shifting the komi did not introduce significant
inconsistencies.

The idea is to, given the distribution of scores using the current komi, change the
komi to favor the underdog. After each change the komi is kept as is for a set number

35

3.3. MONTE CARLO SEARCHES

of simulations to give the observer time to stabilize the new score distribution. This
method was called Value-based Situational Compensation (VBSC). It defines a range
for komi stability. Values outside that range cause a linear increase or decrease of
the komi.

We've experimented with different thresholds for passing, komi offset limits and
methods of preventing score flapping (single changes of the komi can change the
win rate drastically in the endgame) yet could not observe a strength improvement
in even games in 9x9 boards with 3 seconds time limit per match. Dynamic komi
is notorious for being difficult to tune, and not always applicable. In the future we
plan to test in larger boards and time settings, as well as in handicap games. Stone
handicap games constitute the situations identified where the use of dynamic komi
is supposedly more advantageous.

3.3.11 Domain knowledge

Up to this point we've shown techniques that attempt to make better use of the
time available by directing the search to the most promising plays. Most of these
techniques were related to the transition selection phase of They, however,
didn’t make use of any domain knowledge.

One of the ways heuristics in Go can be used to influence is by initializing
newly expanded nodes with prior values — as introduced already as Heuristic
MC-RAVE. Just like a human player would be tempted to look at the most obvious
plays first, even heuristics with little accuracy can contribute to the search.

If our expert knowledge is advanced enough then we can prune out entire branches
of the game tree, which is extremely advantageous. Common examples are prohibit-
ing altogether plays in own proper eye and bad self-atari. Both of these can oc-
casionally be good plays, especially self-ataris, and tactical analysis is often needed.
For performance reasons the same pruning often can’t be made in the playout phase
of

To further restrict the branching factor, plays far from a stone may also be dis-
qualified. An exception has to be made, of course, of starting plays. Passes may also
be disqualified either altogether (while there are still legal plays) or until the only
plays are liberties of groups in seki.

Some of the heuristics commonly used in the initialization of states with progres-
sive bias are shown bellow.

!The safest eye definition, i.e. intersections that are surrounded by four adjacent player stones,
plus at least three in the diagonals. If close to the border then it must be instead completely sur-
rounded, since both players can use the border to their advantage.

2Many self-ataris are poor plays, but they can also be throw-ins, filling eye space of dead groups
and used to allow the creation of bulky five nakade.

36

3.3. MONTE CARLO SEARCHES

10.

. Even-game heuristic — assumes the players are even in strength (attributes an

even quality rating for all legal plays).

Edge heuristic — plays in the edge and the corners of the board are discouraged.

. Nakade heuristic — nakade plays are encouraged.

. Avoid capture heuristic — plays that save a friendly group are encouraged.

Capture heuristic — plays that capture an opponent group are encouraged.

Pattern based heuristics — patterns are tested centered in the candidate play. A
precompiled database is used.

. Joseki heuristics — joseki plays are encouraged. A precompiled database or

tactical solver is used.

. Tesuji heuristics — tesujzﬁ plays are encouraged. A precompiled database is

used.

. Random playouts — play a number of playouts for each prospective play. This

may be used to estimate ownership — focusing the exploration in more con-
tested parts of the board besides providing more [MC| outcomes sooner, delay-
ing [UCT] state expansion.

Grandparent heuristic — information from the transitions in the grandparent
node is inherited; under the assumption that the same transition for the same
player in a similar situation will have a similar outcome. Where this heuristic
falls short, however, is in the fact that for the game state to have been just
visited, it means we haven’t explored the grandparent very well either; which
means we are mostly just propagating prior values across the tree. This heuris-
tic works best if we are delaying state expansion, either by the random
playouts heuristic or using a minimum of visits before expanding new
tree states.

The use of prior values is usually implemented as progressive bias, though it
could potentially be used as criteria for progressive widening. While this consti-
tutes move selection biasing, complete pruning can also be done when the features
overwhelmingly discourage a play.

3Tesuji are well-studied, short, local sequences of good play that may not be obvious to see but
lead to a capture or strategic advantage.

37

3.3. MONTE CARLO SEARCHES

3.3.12 Playout phase

Up until now our playouts consisted in just random play — i.e. uniformly selecting
a legal play that was not inside an own eye; and playing until the end of the match
or stopping early with a mercy threshold or maximum play depth. Discouraging
playing in own eyes is what many authors call light playouts. Conversely the term
heavy is used for more tactically rich playouts.

The use of a mercy threshold consists in ending a playout early if the difference
in match outlook exceeds a certain amount. The outlook is usually given by the
difference in number of stones plus komi (including dynamic komi offset). Playouts
stopped by mercy threshold can return their estimated score immediately. Further-
more matches stopped by reaching the maximum match depth may also be counted
as valid playouts. It is necessary for playouts to have a maximum depth when not
testing for repetitions.

Improving the strength of a computer Go program by improving the default policy
strength is a dark art. Increases in playout strength do not necessarily correlate with
overall program strength; it appears that minimizing the biases is much more im-
portant. Even so, some techniques have been useful over the years for non-random
playouts, that prioritize for instance plays close to the previous play. The matching
of 3x3 patterns has also become a popular heuristic.

In this regard two approaches would become widespread for implementing a
random playout policy. One approach would be to learn the weights of different
patterns by observing the selected plays from real game records; attempting to mimic
the players selection. With a probability of selection of each pattern we can perform
a probability distribution selection in the policy.

Minorization-Maximization algorithm

To include many sources of information — 3x3 shape and tactical information - it
quickly becomes difficult to train each pattern with all this information simultane-
ously, since many patterns will not have enough samples to be representative.

A solution to this problem is in dividing and training different sources of infor-
mation — features — separately and then combining them for estimating the quality
of the candidate play. Equation [3.27] exemplifies the probability of selecting a play
that has feature values 1, 3 and 4, against all other combinations of features present
at the state being evaluated.

Y1XV3X7Y4
YiX Y2t Y1 XY3 XYty XyaXYs+..
Each candidate play is a team of feature values. The same feature can only ap-
pear once (or not at all) and assume one value; but different teams may share feature

p1’3’4 = (3.27)

38

3.3. MONTE CARLO SEARCHES

values. This constitutes a Bradley-Terry model which has been subject to a few algo-
rithms for the learning of a default policy for Go, like Simulation Balancing [HCL10]
and [Minorization-Maximization (MM)| [Cou07]].

With[MM|we learn a model for the weight of parameter values by Bayes inference.
After each run — where we observed many competitions (game states) — we update
the involved feature values i:

Wi
o o (3.28)

Sy,

With W, the wins of the feature value (the number of cases where it appeared
and was selected), N the number of competitions where i was present, Cij the com-
bined strength of the participants of is team and Ej the sum of the strengths of the
participants at competition j.

Another approach to heavy playout policies consists in programmatically encod-
ing the information of tactical features, and their weights. Usually they consist in a
few tactical checks, like if a play is a capture or safe, and matching in the neigh-
borhood of the last play a series of handcrafted shapes. Play selection is performed
uniformly random among the candidate plays. The features that are 3x3 shapes usu-
ally only cover some of the most important cases, such as handd and cuttingﬁ. This
was popularized by MoGo [GWMTO06]].

To further speed up the playouts feature checkpoints are also used, where less
priorital plays are only considered if the previous tactical checks are not satisfied. If
no plays are selected across all checkpoints a random legal play is chosen.

In practice this solution has proven very effective, at least in small boards, even
though the solution is simple and quick to implement. The downside is that it re-
quires expert knowledge in codifying the handcrafted playouts.

Evolutions and combinations of these two approaches exist, such as using MoGo
style playouts with trained 3x3 pattern qualities, or stochastically skipping some
feature checkpoints in MoGo style playouts.

Playouts with a lot more tactical evaluation and larger patterns are also often
called super-heavy playouts, and have been successfully applied in some programs.
The playout policy is also often used for prior values of [UCTlitself, either by itself or
with extra consideration depending on how heavy it is.

Instead of guiding the playout phase, we could also adopt a strategy of removing
the playout phase altogether, replacing it with an algorithm that can accurately esti-
mate the outcome of the match. The difficulty is in finding such an algorithm that is

“In the context of playout policies a play is safe if the resulting group has at least two liberties.

°A play where the stone reaches around the other.

®A play where the apparent contiguity of the stones is interrupted, because they were not strongly
connected (by adjacency).

39

3.4. ARTIFICIAL NEURAL NETWORKS

a good classifier overall (with no weaknesses to particular sub-problems) and is fast
to compute.

3.4 Artificial neural networks

have been used in the last decades as a simple solution for discovering the
patterns present in some complex data. are systems inspired by the biologi-
cal neural networks, consisting of a graph-like structure with vertices for neurons
and directed arcs for synapses. In the most simple variants, the system features a
number of input units and output neurons, with possibly more neurons between
these, connecting them; and through the successive application of some transforma-
tion functions, the energy signal input in the input units is mapped to a response
codified in the output of the outer neurons [[Hay98]].

The family of used in Matilda is that of the [Multilayer Perceptrons (MLP)
probably the most thoroughly studied example of

For an to be trained with supervised learning it is important that it can
map the desired response for its input in its structure, to be able to generalize the
problem (adapt to examples of the problem that it has never been subjected to)
and to account for the noise in the data set. A data set in this context is simply a
set of observed combinations of states and responses in the problem the [ANN] tries
to model. A popular method of supervised learning is through an error correction
algorithm. In[MLP|this usually means propagating the observed error at the outputs
through every neuron, correcting the weights of each synapse.

Using [ANN] for board wide move selection in Go is challenging:

1. 19x19 Go is an extremely complex game, to be able to learn to play the game
at a reasonable strength the size of the network and the number of examples
in the data set must be very large.

2. To play Go well the consistency of the quality of play is also very important.
Machine learning algorithms tend to privilege situations that occur more often,
potentially leaving a Go playing [ANN| with serious lacunae.

3. Training as introduced above also requires a data set, which may be impossi-
ble to obtain. While there are freely available compilations of game records
for 19x19 boards with Japanese rules, other board sizes and rule sets are ex-
tremely underrepresented.

This work does not attempt to produce a Go playing [ANN] instead it aims to pro-
duce a quality predicting network for state evaluation, or urgency classifier. A quality

40

3.4. ARTIFICIAL NEURAL NETWORKS

predicting network attempts to classify the quality of each available play, and our ob-
jective is that it is accurate enough that it can bias a reducing the average
regret. It may be terribly wrong in a subset of the problems, but we are looking for
an on average positive contribution, that is then verified by a more thorough algo-
rithm (like MCTS). This is a more humble objective than actually having the [ANN]|
play the game directly, and therefore should be possible with a more modest sized
network and hardware requirements.

The idea of combining these or state space searches with for the
purpose of solving more difficult problems that what can be solved by one of them
individually is not new. It has been attempted throughout the years, and is seeing a
revival with the new found popularity of

One of the attempts at using simpler [ANN] for the purpose of playing Go was in
1998 made by the authors of the[SANE/method (1996). The[SANE method attempted
to be (yet another) solution to problems where supervised learning cannot be applied
for lack of an effective evaluation function.

In this section the production of via two families of algorithms is presented.
The first subsections will explain the genetic evolution algorithm used and the struc-
ture of a Go evaluating [ANNl Next is presented the solution for[MLPwith supervised
learning with error signal backpropagation.

3.4.1 Genetic evolution of neural networks

As learning algorithms, usually feature the repetitive application of an evalua-
tion phase, followed by a a reinforcement phase. In the evaluation phase an is
exposed to an outside influence on its input synapses, calculates its impact through-
out the net and outputs what output it may have in its output synapses. In the
reinforcement phase the network is modified, usually only in the weight given to
each synapse, in an attempt to move its observed output to the expected (desired)
output.

If the network output cannot be accurately evaluated then it is very difficult to
direct the structure of the network towards the ideal structure. This can be the case
in Go, where a move by itself can be very hard to grade, given the long reaching
consequences it may have in the later game. If we use an external algorithm to
grade every single move then the process will be very slow; if instead we use a set
of compiled examples then the network strength at playing Go will be limited by the
strength of the examples. The training set also has to be very large to teach Go on a
19x19 board and the training set has to be representative of the many sub-problems
present in the game, which is also difficult to guarantee.

Because of this it may be impracticable to apply the usual learning algorithms of
[ANN] to problems such as Go. If we want to use this computer generated solution

41

3.4. ARTIFICIAL NEURAL NETWORKS

in the form of an [ANN| and are unable to have it learn the desired behavior the
normal way, we can use other algorithms, like genetic evolutionary ones, that should
eventually converge to an acceptable solution.

Genetic evolutionary algorithm are, again, decades old algorithms that take in-
spiration from the natural sciences, in this case from the process of evolution by
natural selection. A genetic algorithm works on a population of individuals, or chro-
mosomes, evaluating the fitness of each individual to the problem in question, and
then promoting the mating of the best fit individuals. If the population size is limited,
the offspring of these individuals replace the worst fit.

3.4.2 Go playing neural networks

Before describing the evolutionary method used it is important to identify the struc-
ture of our network. All networks in this work are two-layer perceptrons. They all
feature three input units per board intersection, that codify one of eight things: own
stone, opponent stone, illegal to play, empty and one liberty after play (self-atari),
two liberties, three liberties, four and finally five or more.

An illegal classification strictly refers only to suicides and ko violations. Tactically
poor plays like playing in own eyes are not discouraged directly. The rationale behind
this was that[MCTSlwill already be heavily biased based on such knowledge; we want
to observe the impact of the smallest of networks on top of it.

The network neurons are not subjected to any bias parameters and use the hy-
perbolic activation function:

f(x)=a x tanh(bx) (3.29)

With a = 1.7159 and b = 2/3, and output layer target values {—1,1}. One
output neuron is used per board intersection. This allows the network to output an
estimate of quality for every possible play, instead of only the best play. In selecting
the best play the neuron whose output is least distant from 1 is selected. There is
no codification for passing, instead a constant cutoff point was set where all outputs
bellow which were considered worse than passing. This cutoff point is used only
when the network is put to play by itself.

An[ANN]|such as this is an exercise on whether the simplest of networks still offers
value to a[MCTS| based program; not whether a more feature rich, deep network is
better. At this point in time this is hard to dispute, with the recent results on the use
of

In the hidden layer the genetically evolved networks and the trained networks
differ. The [SANE|l method performs genetic operations with the entire hidden layer
as its chromosome. Each neuron also has a few connections to the input and output
layers. In this work the number of 8 input connections and 6 output connections

42

3.4. ARTIFICIAL NEURAL NETWORKS

is used. Please note that a typical neuron only has one output with multiple inputs
subjected to weights. In the [SANEl method however the connections between the
hidden neurons and the output neuron are defined at the hidden neurons. Because
of this these neurons will be called simply nodes from now on. These nodes are rep-
resented in the figure bellow, showing a node fed by six input units and contributing
to six output neurons.

Input Hidden Output

layer layer layer
Input unit i;, — QH Position p;
Input unit i, — QH Position p,

Input unit i, HQ\) QH Position p,
Input unit i, HO/ QH Position p,

Input unit iy — QH Position ps
Input unit iy, — QH Position pg

There is no locality for the connections, that is to say, they can connect to posi-
tions very far away in the corresponding Go board. The original [SANE method also
didn’t use a constant amount of connections to the input and output layers. A con-
nection could change layers via mutation, even if it meant the node wasn’t connected
to one layer at all. This was the only detail of this algorithm that this work parted
ways with, enforcing a constant number of unique connections to both layers.

The number of nodes in the hidden layer is a subject of experimentation. In[ANN|
more neurons don’t necessarily mean better results, and the authors of the [SANE]
method made no hypothesis of a good number of nodes for larger boards.

3.4.3 Evolving neural networks

The above structure for an[ANN|can be represented in the form of a genetic algorithm
chromosome as a fixed length array of definitions of nodes of the hidden layer. Each
chromosome is composed therefore of the connections from the input layer to that
node and from that node to an output layer node, and associated weights. Since
our chromosome is composed of similar parts the operation of crossover — used to
generate offsprings of the current population in a genetic algorithm — is possible.

43

3.4. ARTIFICIAL NEURAL NETWORKS

Having defined the representation of our chromosome to be evolved in a genetic
algorithm, we can take another look at the [SANE] method. Richards et al. further
[SANE]by also defining a different genetic algorithm, which presents a symbiotic rela-
tionship between the evolution of two populations [RMM97]]. When applied to Go,
this meant treating each candidate network formed from the node population, as
another individual; this time of a network population. Network mutation is defined
as choosing one of the composing nodes at random, and randomizing its connections
and weights.

When evolving networks there are a lot of similar nodes. If we only evolve the
networks without any kind of node sharing, the result will be a lot of wasted effort,
since we will only be removing inefficient nodes one at a time when a network is
crossed over twice correctly or that specific node mutated. If we share the nodes
by the evolved networks but don’t have them evolve, we are limiting our genetic
material renewal to the mutation operation. By also evolving both populations at
the same time we are changing the nodes in all the networks that include them,
based on the supposition that a very poor quality node will also be of lower quality
in all other networks it is inserted in, and we will be replacing non participant nodes
on the basis of a high correlation between participation and contribution to playing
Go.

This means the operation of crossover of the network population contributes to
the fitness and consequentially the evolution of the node population, by speeding
the renewal of its genetic material.

Having said this, the evolutionary algorithm with two populations is described
succinctly in pseudocode in Algorithm [11

This algorithm features the skeleton [SANEl method, with a final piece that tests a
certain stopping criteria like defeating an external opponent. The calculation of the
fitness of the networks themselves was tested as three different variants. The first
variant, sane-opt-rnd, initially used for testing the correctness of the implementa-
tion itself, calculates the fitness of a network by playing five matches against a quasi
random opponent; the network plays white. The opponent is random except for not
filling own eyes and avoiding playing at the corners. The second variant, sane-opt-
gtp, is similar but the opponent is randomly played (for each turn) either by the
previous random opponent, or by an external program via The opponent used
was GNU Go 3.8. The third and final variant, sane-tournament, pits the networks
against each other to generate their fitnesses. Each network plays at least five games
starting first and against randomly picked opponents (besides itself). This means on
average each network plays ten matches.

A tournament based approach is reasonable since we are only trying to isolate the
best networks in the evolution process; and it already provides a smooth difficulty
curve which is important to facilitate the networks evolution. In the sane-opt-gtp

44

3.4. ARTIFICIAL NEURAL NETWORKS

Result: Go-playing network
randomize node population;
randomize network pop. from node pop.;
while true do
calculate network fitnesses;
calculate node fitnesses from network fitnesses;
sort network and node populations;
if best network satisfies stopping criteria then
| return best network;
else
crossover best nodes;
crossover best networks;
two-phase mutation of offspring networks;
mutation of offspring nodes;
end
end

Algorithm 1: Co-evolution of networks and nodes for Go

this curve is represented by the gradual change from random play to GNU Go play
selection. The algorithm starts from 100% random play selection, gradually changes
to 100% GNU Go play with level 0, and from then on would increase the level of
GNU Go.

For all the variants the algorithms disallow superkos where possible (GNU Go,
the opponent used, allows superkos by default so it wasn’t enforced in its turn)
and if a match does extend beyond reason, both players are penalized.

The unified stopping criteria gives a certain minimum quality of play expected,
which is useful for comparing the fitness variants. In the solution chosen, the best
network by fitness is pitted against an increasingly harder combination of random
play and GNU Go play. The program stops when a network is capable of winning
every match. This means we can stop testing early if an early match is lost, which
is useful because more random matches are also much faster to compute. The slow
nature of pitting the network against an external algorithm is lessened by running it
only once per generation, of every few generations.

Using [ANN] to play entire matches, the current structure dictates the exact re-
sponse of the network, and therefore if two [ANN] enter in a superko cycle (for in-
stance during the fitness calculation) they will be stuck until the maximum search
depth, which is the worst scenario in terms of performance. This actually happens
every few hundreds of matches among young [ANNl By also enforcing the superko
rule, the repetitive plays are not played and the match can continue.

45

3.4. ARTIFICIAL NEURAL NETWORKS

Experiments

This network formulation is admittedly insufficient for competitive Go. Although it
is simple enough to obtain good results in small board sizes, the complexity appears
to rise tremendously the larger the board. More advanced, modern approaches, usu-
ally attempt to develop more local networks, and have them applied or generalized
to bigger boards; this usually is much more cost effective than attempting to tackle
19x19 boards head on. Secondly, the rate of increase in the [SANE| method parame-
ters, like the population size and neurons by network, is also not well understood.
This requires extra experimentation which is time consuming because of the already
time costly evolution. Finally a third problem deals with the ability to defeat an
external opponent. Regardless of this being done in the fitness calculation stage
or in the stopping criteria stage, the external opponent is probably much stronger
than anything an[ANNI this small can hope to be, and a method of slowly increasing
the difficulty to aid the evolution is non-existent. Adding randomness to the play
selection is a poor substitute because it produces noise in the relationship between
network fitness and match outcomes, which in turn delays the convergence of the
population to its desired quality of play.

For each of the three fitness variants of the method an input codification of
2 bits and 3 bits was tried. The difference in quality was marginal. The sane-opt-rnd
after 1300 generations showed no improvement in defeating its random opponent.
The maximum win rate observed was 86%. The sane-competitive version did not
generate champion networks capable of defeating 90% random / 10% GNU Go con-
sistently and also seemed to stop improving or do so very slowly. the sane-opt-gtp
was less thoroughly tested than the others two variants because of the large amount
of time needed to compute the fitness against GNU Go; after 32 generations it was
also in the quality level of only winning against 90% random / 10% GNU Go play-
ers. Besides the difference in number of input units per board position, some other
parameters were tried, like a larger number of neurons in the neuron pool and per
network blueprint. The values ranged from 2250 to 3750 hidden layer neurons per
blueprint and 12750 to 21000 total neurons in the population.

In all three variants the best network of one generation was rarely present in
the next, which suggests the fitness functions were poor indicators of quality. This
was expected, since we in the end are trying to improve on the quality of individual
moves by the overall result of a match.

Although the networks generated are very poor overall players, that is not to say
whether or not it is a result of a few poor plays; it is important to understand whether
the network is improving as a whole as an urgency classifier. To better judge this,
after each n generations the champion network was also subjected to a test run. In
this test run the network is evaluated with hundreds of thousands of combinations of
inputs and expected outputs, to gauge statistics like the median rank of the desired

46

3.4. ARTIFICIAL NEURAL NETWORKS

play. The results are presented at the Results section of the Implementation chapter,
contrasting them with the trained [MLP| networks.

3.4.4 Training multilayer perceptrons

In this method the network is trained one example from the data set at a time: first
a forward phase is performed, where the problem state is codified and input at the
input units. Next the signal is fedforward until it reaches the output units, which are
again checked against another codification for the output of the system. Then, in
the reinforcement phase the desired output and the observed output are compared
and the error signal generated. This error signal is then sent backwards, adjusting
the synaptic weights of the network based on their individual contributions to said
error.

There is a lot of literature about training [MLPlwith back-propagation of the error,
and this work will not attempt to reinvent the wheel, or go in depth about the math
behind the algorithm. In fact this work uses a very simple, generic implementation of
the[MLP and its training, that given the parameters used should be easy to replicate.

In our[MLPithe structure of the network is fixed, with only the weights fluctuating.
The codification of the inputs and outputs is the same as the one used with the[SANE]
method, with three input units and one output neuron per board intersection. It is
the hidden layer and connections that are different. The input layer codifies 3 bits
per board intersection; if we want to maintain spacial locality we can say they are
three maps offering different views over the same layered board position. In our
hidden layer we use a single map of size 19x19. This structure is illustrated in
Figure [3.4] for 5x5 boards - to the left is a Go board and to the right each square
represents a neuron. Every neuron in the output layer connects to all neurons of
the hidden layer that are at least a certain maximum distance (d) away. Similarly
every neuron in the hidden layer is connected to every input unit in all three maps
that is closer than d. For the distance a Manhattan formula is used where the input
map of the unit is not taken into consideration. The use of this distance means each
neuron has a perceptive field. Since there are two layers of these neurons, we can
say that the output layer neurons even have a focal field, where they can perceive
more about things closer to them — because they have many overlapping connections
— than farther away, where the perceptive fields are stretched and connections more
sparse.

The use of the term map should not be confused with its meaning in [CNNL

With a very small p it is impossible to learn whole board strategies. Having small
values of p also increases the generalization capability of the network, besides having
the obvious advantage of being faster to compute. Larger values of p (p > 7) were
found to be optimal in 19x19 in the experiments performed. Note how for one corner

47

3.4. ARTIFICIAL NEURAL NETWORKS

Figure 3.4: 5x5 board and input, hidden and outputs layers

intersection to be able to influence the opposing corner, p must be at least 19. With
p = 10 each of the 722 neurons has an average of 291 connections.

For training the weights were initialized randomly from [—2.4/w,2.4/w]
\[—0.001,0.001]. w corresponds to the number of input synapses of each neuron,
and is therefore neuron specific depending on where it is located in the network.

Upon experimenting it became apparent that the network easily entered into a
state of saturation, virtue of having many outputs with only one active each time.
This also introduced high fluctuation on the network when high learning rates were
used.

[MLP| training typically features either constant learning rates or adaptive learn-
ing rates. The use of adaptive learning rates allows faster learning by adaptation of
the learning rate so it increases when a high rate can be used, and decreases when
a lower rate is needed — because we’ve passed a minima of the error curve, as de-
tected by the signal of the weight correction [[AIm97]. Adaptive learning rates were
experimented with for this problem with no success.

Unfortunately in this application of [MLP training the neurons are very seldom
expected to activate and as such the learning rates would accelerate quickly, causing
them to saturate the activation function. In this work saturation was such a problem
that we used a constant low learning rate of 0.002, after experimenting with values
between 0.5 and 0.0005. Interestingly this value is close to 1/(19 x 19).

Another issue related to the saturation of the network is that the trained network
has a lot of difficulty in activating the output neurons output to the target value 1.
On experiments with purportedly small training sets it was observed that only with
the network overfit did it start to yield outputs close to the target value for the best
play. This means that if we are interested in selecting the best plays, we have to
either discover the average threshold which is network dependent, or we have to
sort the outputs by energy first and then select a fixed number of plays. Another
alternative could be to use non-symmetric target values for the output — a kind of
output normalization as is sometimes used on the inputs.

Given that the board presents natural symmetries, the reader might ask herself
whether some method of weight sharing or cooperative learning was used. When
applied to fields like pattern recognition, where the data also exhibits similar sym-

48

3.5. TIME ALLOTTING

metries and even shift invariance (which is important for learning individual Go
patterns), often employ these methods. These were identified as possible im-
provements but due to time constraints, and the low impact of such an improvement
(since learning is performed offline) they were not explored. In tasks that require
much longer training times such as training these are invaluable techniques.

The results of the training of[ANN], and the evolution of using given
as the accuracy of the network to identify the play present in the data set, is shown
in the Results section of the Implementation chapter. It is followed by the results of
the application of the resulting networks as part of a algorithm. A description
of the data set and verification methodology can also be found there.

3.4.5 Use as prior values heuristic

As explored before, an can be improved by biasing different parts of the al-
gorithm, and limiting the branching factor of others. In this work we experimented
with using a product of[ANNlcomputation as an heuristic for prior values of newly ex-
panded [UCT] states. This solution has been done before in a number of publications
on the application of to Go. Maddison et al. use to provide prior values
a-posteriori [MHSS14]] (optimizing batch processing) and Yuandong and Yan block
the state expansion waiting for the processing of the for prior values [TZ15].

When using the two-layered [MLP| as a prior values heuristic in this work, the
board configuration is first fed the input layer of the network. Upon the forward
pass, the output energy of the network is sorted by distance to target value (1).
Then the legal plays are divided into three groups based on their output signals: the
plays in indexes [0, [/4[, [L/4, 1/2[and the rest; with [the number of legal plays
not disqualified by tactical evaluation.

A play, depending on the group it is placed in, has the corresponding statistics
initiated differently to promote the exploration of the most promising plays first. The
top 25% plays are promoted while the bottom 50% are demoted. This heuristic is
only used when the number of legal plays is over a minimum threshold. When the
board is very full many plays will be about solving problems of life and death, which
this network should not be capable of.

3.5 Time allotting

Up to this point the previous techniques have mostly concerned the evaluation of
single board states as to decide on the next play. In real life a computer Go software
requires a context sensitive layer.

As introduced with the solution architecture, a computer Go program is often
used with a game coordinator, or controller. One of its tasks in ensuring the rules

49

3.5. TIME ALLOTTING

are followed, which includes time keeping. For time keeping it contains internally
two time counters alternatively counting down; ending the match early if one of the
counters runs out. This controller program informs the Go playing program of the
time available for the entire match, not for each turn. How best to use the time
available is a decision often left to the context sensitive layer of the program.

Some computer Go program think for what their programmers believe is a short
amount of time, as not to bore its human opponent, because they lack more sophis-
ticated time allotting mechanisms. Others distribute the time available uniformly
throughout the game, estimating how long it should take. This distribution is usu-
ally very conservative so that the opponent can’t win simply by playing a very long
match.

This behavior may be the most suitable for casual play; but for competitive play
may introduce a window of opportunity. In this work we propose a number of time
control strategies that if placed in charge of a computer Go state evaluator should
produce a stronger quality of play throughout a whole match. The only requirement
this introduces is that the execution time of the evaluator is either predictable or its
algorithms interruptible at will.

We shall call this extra piece of software a time control module. Whereas before
the game coordinator would directly ask the evaluator for its opinion of a certain
game state, disregarding the game context of said state, now we have a module
that attempts to pace itself for the whole match and take advantage of unsuspecting
opponents. A time control module can be more or less complex depending on three
factors:

1. The variety of systems of time control used.

2. The support for playing against human players as well as computer programes.
There are a number of special considerations for both. Being able to auto-
matically distinguish human from computer players midgame would also be
valuable.

3. The algorithms that play the game and how well can their execution be con-
trolled at will, plus the ability to reconcile internal information with human
requests like that of undoing the last move.

Being bound by the convention set by the[GTP], most programs support the Cana-
dian byo-yomi time system. It consists in the specification of three parameters: a
main playing time (also known as absolute) and the byo-yomi, which includes a
number of stones that have to be played in a certain amount of time (byo-yomi pe-
riod). The byo-yomi (if present) starts after the absolute time runs out. When all
byo-yomi stones of the period have been played the byo-yomi time is reset for the

50

3.5. TIME ALLOTTING

next batch of stones. This time system can also be used to support other simpler
time systems, like an absolute time per match (sudden death) or fixed time per turn.

Canadian byo-yomi system is a variant of Japanese byo-yomi, which uses instead
multiple byo-yomi periods usually of a single stone. Japanese byo-yomi is most com-
monly used among humans. Both methods are supported in Matilda.

In Matilda the allotted time per turn (tt) is given by Equation[3.30l t, and t, are
the time available for byo-yomi and absolute time parts. s, is the number of byo-yomi
stones and s, an estimate of the length of the current match.

t

t
tt =argmax(—b,) (3.30)
Sp S./2
s, = argmax(B,,S) (3.31)

Equation is used for the estimate s, of the length of a match for each player,
with S as the board side size and B, as the number of empty intersections. It is usually
more useful than just the number of turns that have elapsed, since games can have
varying amounts of captures. This yields a potentially lower than usual game length
for 19x19 Go (180 instead of 200), the reason for this is we want to allot more time
in the early and midgame of the match than in the endgame, where the branching
factor is smaller. The estimate s, starts low and is then corrected throughout the
match if it lasts longer than expected while still in absolute time. It is divided by 2
because each player will play half of the moves.

This is the generic time allotment mechanism used. Other programs also take
into consideration the certainty of the algorithms behind them, for instance allotting
more time if the simulations were inconclusive. Doing that, by virtue of the
collected statistics, would also be impacted by dynamic komi offsetting. can
also be stopped early if the game outlook is very one-sided. This makes it harder for
an opponent to attempt to win a lost game by staying in the game.

Another simple improvement to be used with pertains to the initial pop-
ulation of the structures. If a computer program switches from using an
openings book to using[MCTS] the state tree will initially be empty; whereas at later
turns it will already have much information to better guide the search. Because of
this the first play using may be of much weaker quality. To compensate for
this its execution can be awarded a bonus amount of time, for tree population.

Adversaries to perfect use of the available time are the difficulty in ending an
at precisely the time allotted, and compensating for network latency. To make
matters worse, most game coordinators only inform the program of the available
time and time system used in the beginning of the match. If it was also transmit-
ted between plays the program would be better equipped to assess the time already
spent, and correct its internal clock values. The also does not include a com-
mand for transmitting the expected network latency.

51

3.5. TIME ALLOTTING

To counter this last issue, Matilda can optionally collect the amount of time
elapsed between commands received to estimate the round-trip latency of the com-
munication. This technique relies on the controller program to wait for the responses
between sending more commands. If this is not done, it cannot be used reliably, and
a constant lag correction is used instead.

3.5.1 Against humans

Based upon the above progressive linear time allotting Equations [3.30] and [3.31]
(page 5I) we can then further tweak the available time per turn for a psycholog-
ical advantage (against human players only therefore). Some possible techniques
include:

1. Performing time based subliminal cues to influence human play.

2. Identification of game situations that are easier for computers and harder for
human beings, and vice-versa.

Please notice this section deals a lot with the psychological and it has no basis
but my own experience in playing competitive board games. One such observed
experience is that human players can be consistently led to change their rhythm.
Among two players, at the beginning of a match there is usually a degree of distrust,
caution and anticipation. After the opening stage where playing is mostly automatic,
the time used to play leaves a heavy impact on both players. A player that considers
herself the strongest will usually tend to play faster than her opponent; likewise a
player that sees herself in a bad position will feel pressured to play faster to emulate
the stronger player. If one is not careful with her pacing she can be led to increase
their rhythm past their comfort zone, and commit uncharacteristic mistakes.

This is something that a time control module can abuse when playing against
human opponents. By carefully playing ever so slightly faster, throughout a match
that lasts for hundreds of plays, the software can slowly make the human player play
faster. This is also to the computers advantage since the game complexity goes down
the fuller the board is. On the upside this strategy, besides requiring the knowledge
of whether the opponent is a human being, should also be less effective the longer
the match, because the human sensibility for the time used per turn is limited.

Another technique related with timing cues is playing one turn unexpectedly
slow, or fast. This suggests that a particular play was either more complex than
usual, more obvious, or the communication is lagging (if played online). If the play
was simple and the program used more than usual time the human player will be
left suspicious and overcautious. If it was difficult and played quickly the player
will be left alarmed and rethinking the expected sequences of play. Either way the

52

3.5. TIME ALLOTTING

Simulations | Win rate | ELO difference | Games
1000 50.3% 2 435
2000 69.5% 143 488
4000 82.1% 265 431
8000 92% 424 512
16000 94% 478 468
32000 96.6% 581 468

Table 3.3: Self play with varying number of simulations

computer player has the advantage because humans are usually very visual — that
is to say, they benefit greatly from being able to see the current state of the board;
and are hampered by thinking many plays ahead. For the computer player however,
spending the normal time thinking of its play and then spending an extra amount
of time thinking of the response to the most obvious human response is no more
difficult. This requires the computer program to be able to continue the in
the background while in the opponents turn. If the human player is unaffected then
the quick replies in complex positions may prove costly, however.

Another family of possible improvements deal with identifying the problems hu-
man and computer problems have the most difficulty with, and attempting to abuse
them. Machine learning can be applied offline to human game records to correlate
game situations with blunders committed, or the contrast between playing styles
and qualities, such as contact play, stone connectivity and tenuki reluctance.

If a game situation can be classified in the difference in complexity for humans
and programs, that can also be used as [MCTS] bias.

To better understand the effect of the time available on reinforcement learning
by [MCTS], Table [3.3] shows the result of self play with an increasing number of sim-
ulations per turn. The opponent is always the version using 1000 simulations. The
matches were run in 9x9 with the players alternating colors. Both the win rates and
ELO differences are shown to better represent the increase in strength. It can be
seen that the increase is not linear with number of simulations.

53

Chapter

Implementation

During this work a computer Go program was produced that uses many of the previ-
ously explored techniques, named Matilda. It is distributed as permissive free soft-
ware. Matilda is directed for competitive play in BSD, Linux and Mac OS X systems
with shared-memory architectures. Its only requirement is the use of an OpenMP 3.0
supporting C99 compiler, like gcc or clang. It also benefits from being used in 64-bit
systems, although it was written to be immediately portable to any architecture.

OpenMP is a shared-memory API for facilitating parallel programming [[CJP]].

Matilda was implemented with safety, minimalism and speed in mind. The focus
on safety aims at it being ran and left unattended for long periods of times — without
memory leaks or potential inconsistencies — which is important for leaving Matilda
playing online without supervision. The focus on minimalism makes it as small a
codebase as possible; removing unused code and over-engineered traps that are dif-
ficult to maintain. The focus on speed is a consequence of the competitive purpose
of the program. It requires a balance to be found between solution abstraction and
the performance hit that from it may arise. Most notably was the decision to have
the size of the Go board set at compile time, instead of settable via

Matilda supports odd board side sizes between 5x5 and 21x21. Boards larger
than 21x21 would require more memory to store group liberty counts; boards larger
than 25x25 are also not supported by the More important than the board size
limits is the fact that Matilda makes use of many external files generated from out-
side processes. Since those files depend on the availability of game records it is
inadvisable to use Matilda with board sizes other than 9x9, 13x13 and of course —
19x19. Both odd and even komi are also supported — this makes draws possible.
Drawn outcomes are treated the same as losses in the algorithm (for both
players), except that the criticality statistics are not updated.

Only the Chinese rule set with positional superkos is supported, which disallows
multiple stone suicides and uses area scoring. Many computer Go programs also only

55

4.1. ORGANIZATION

support Chinese rules and then simulate other rule sets. Enforcing other methods of
superko (situational — used in Japanese rules), as well as changing the scoring func-
tion to only count territory are simple modifications. The inclusion of the number of
captured stones in the scoring function — necessary for territory scoring, used in the
Japanese rules — is however more difficult. Specially when transpositions are con-
cerned. We can instead shift the evaluation function scores one point in favor of the
opponent. Final scoring between Japanese and Chinese rules usually only differs by
one point; this sub-optimal correction should introduce little difference in strength.
This or other methods of Japanese rules simulation are as of yet not implemented in
Matilda.

4.1 Organization

The project is entirely implemented in C and organized with a shared code base, that
includes almost all the functionality of Matilda. On top of it a number of programs
are built, one of which the actual Matilda executable for Go playing. Other pro-
grams built are used for the compilation of opening books and data sets, for feature
extraction from game records, [ANN]training and unitary testing. This is represented
in Figure 4.1l

Other programs were also present in the past, for the genetic evolution of [ANN]
using the [SANE] method, for the generation of 7x7 rhombus patterns, feature ex-
traction with Minorization-Maximization, etc. These were removed from the main
codebase when experiments with them were not pursued further.

4.1.1 GTP and SGF support

Matilda has almost complete [GTP| version 2 draft 2 support. As is customary, it also
adds private extensions to the protocol. This section will succinctly enumerate the
limitations of commands that presently do not have full support; and then the
private commands added in Matilda.

1. boardsize — the protocol specifies this command must not fail; yet it fails in
Matilda if the requested board size does not correspond to the board size the
application was compiled for. No fix is expected for this issue.

2. final status_list — the protocol is ambiguous on whether the command may fail
with the option seki; which happens in Matilda.

Matilda also supports two private commands for use when connected to the KGS
Go Server; seven commands used in GNU Go; two commands to connect with GoMill

56

4.1. ORGANIZATION

- tactical functions
- scoring

[]

Playouts
- play selection
- light policy
- heavy policy
- attribute caching

- ANN
- opening book

1]
Heuristic UCT+RAVE
- AMAF/RAVE
- dynamic komi
- transpositions table|
- UCB1, UCB1-TUNEL

Matilda
[]] 1]
Main program Feature extraction Data set compiler
- text mode - full MM features for ANN use
- GTP mode - shapes weights only
- time control
[1 1] 1]
ANN trainer Opening book Unitary testing
compiler
|
Shared
1] 1 1]
Board representation Strategies Context based
- simple and CFG - random play - game record
- board I/0 - default playout policy - SGF
- state changes - MC planner - maintenance

- parameter tuning

1]
Other

- 3x3 shape matcher
- data structures
- data set 1/0
- RNG
- hashing
- time keeping

- logging

Figure 4.1: Project overview by visibility and concern

57

4.2. BOOK OPENINGS

— a computer Go tool suite; and six commands specific to Matilda. Two of these last
commands allow changing the active strategy, invoked with requests to play.

Most programs don’t offer multiple playing strategies, for the obvious reason
that one of them will be the strongest, and receiver of the most attention. This is
also true in Matilda. Strategies other than Heuristic UCT-RAVE as described in this
document, are implemented and can be played against, but generally offer much
poorer results: the [ANN| used almost do not pass until there are no legal plays left,
the simple Monte Carlo planner is only a decent player in very small boards, and so
on. Most strategies are kept for testing rather than with actual competitive play in
mind. For testing they are useful since they do not use a transpositions table and are
fast to compute. As such they do not interfere with the execution of [JCT=+T] and its
maintenance; allowing self-play with just one instance of Matilda.

Matilda further supports three more private commands for playing Frisbee Go.
Frisbee Go is a recently invented variant of Go where play is non-deterministic [[Alt15]].
Since it is so recent no other free software supports playing Frisbee Go, which makes
it difficult to estimate the strength of Matilda at this point in time.

In the past Matilda supported for both client and server applications. This
was necessary because the genetic evolution programs required communication with
remote [GTPFspeaking programs. When this functionality was removed Matilda was
free to only fulfill the role of server, and the client-side support was removed
from the main codebase.

4.2 Book openings

A book of openings is one direct application of domain knowledge. This knowledge
in particular was observed, either by a human or computer program, and collected in
some way. It codifies rules of state — play pairs; sometimes with multiple response
plays, with the purpose of quickly providing a strong reply to the most common
opening sequences. It uses the simplest form of pattern matching, matching a whole
board state to a unique response play. Using the whole board as the pattern means it
quickly becomes computationally prohibitive to store and compare a large number
of openings. To reuse our rules they are applied invariable of playing player or board
symmetry.

We use the term reduced state to mean a state representation that has been trans-
formed to be the unequivocal representative of game states that can be transformed
in the same state via color changes, board flips and rotations. Similarly state reduc-
tion is used to mean the act of transforming a game state in its reduced state.

Support for the opening books of the program Fuego is widespread; and they are
also supported by Matilda. Fuego opening books are text files with one line per rule,
with the state in vector form followed by equally good response plays. This makes

58

4.2. BOOK OPENINGS

the book more accessible to editing by human beings.

Matilda uses its own format for opening books, but they can be generated auto-
matically from both collections and Fuego-style books. By default rules from
Fuego-style books are given higher priority, but it is important to support the com-
pilation from collections to have more versatility in the number of board sizes
supported. files, even if not played by human players, can be generated from
computer play and help improve the strength of Matilda in uncommon board sizes.

The openings collection is a straightforward, sequential process. A large collec-
tion of professiona games is searched and analyzed. From it, all board states and
corresponding plays are recorded for the first n turns.

Some response plays are more common than others, and the frequency of each
appearing in the game collection is recorded. This frequency is used as proba-
bility to form a Markov process where the weights are the probability of each of
those plays, starting from the initial blank state. Games started with handicap
stones are therefore not considered. In Matilda, for this purpose, the game re-
sult is not taken into consideration when extracting states and their responses. An
opening book can therefore be thought of as containing an ordered sequence of
{Hio> 115 - Hios J1s> -1} = {(Po> ko), (P1, k1), (po, ky)} rules, with the is and js meaning
intersections filled by the playing player and opponent, respectively, and the p,k pairs
the probability of playing at a certain position k. In Matilda the residual probability
of playing something other than the top two plays is added to the best play of the
two.

When generating the openings book the state in reduced form plus its CRC32
hash are stored together with the two response plays and their probabilities of acti-
vation. When playing Matilda includes a hash table indexed by CRC32 hash with lists
for buckets. Furthermore when Matilda arrives at a state that cannot be answered
just from the opening book, its use is turned off for the rest of the match.

After the collection process has completed, the computer Go software only needs
to compare its current reduced position to the saved states in the hash table, and if
one of them matches, follow one of the transitions with the associated probability.
Having more than one possible transition brings variety to the play which is pleasant
for human opponents.

The restrictions on the collection of game states and transitions currently used
impose Chinese rules, a minimum of S + 1 turns per match, and use plays only from
the first S turns. Only states with at least three appearances are used. These values
were tailored to the data set used and the needs of Matilda; plus to be reinforced by
Fuego-style books as said above. S equals the size of the side of the board.

The openings book for 19x19 was generated from 63861 games which included

!The term professional is here used loosely, because professional players seldom play in public,
making it difficult to collect a sizable sample from that level of play.

59

4.2. BOOK OPENINGS

537333 unique plays and 68 passes; and from Fuego-style books that contained
28611 unique rules. In total 54541 rules were exported (511403 did not meet the
three appearances requirement). The games were played between KGS Go Server
players of 6d or better rank. The use of rules extracted from game records did not
improve significantly on the strength of the program when compared with using just
the rules from Fuego-style books, for the board sizes for which they were available.

4.2.1 State hashing

CRC32 hashing is used in Matilda for full state hashes only. The freely available
CRC32 implementation by Gary S. Brown was imported from the XNU kernel source
code, made available by Apple Inc. It is licensed as public domain. It was lightly
modified to reflect a use in user mode (without kernel imports) and to adhere to the
code conventions of the rest of the solution.

Where advantageous, Zobrist hashing was used instead. A Zobrist hash is often
used for game state hashes in games like chess and Go. It is a non-cryptographic
hash that can represent a game state with a small number of bitwise exclusive or
operations over a similar (previous) state; which is particularly powerful in board
representations of Go where a play usually only modifies a single intersection. Zo-
brist hashing is more efficient in the[MCTSlalgorithm and transpositions table, where
it can take advantage of the little change between game states. In the comparison
of states in reduced form, where hashes have to be created from scratch, CRC32 is
used instead. Matilda is capable of generating on-demand collections of 64-bit val-
ues with perfect bit distribution to be used as codification tables for Zobrist hashing.

Aside from hashing game positions, smaller, local configurations can also benefit
from hashing. A modified form of Zobrist hashing is used for these as well, which
consists in the codification of only a neighborhood of a position, invariant of its
location in the board.

4.2.2 Joseki book

The previous generation of opening books creates potentially very deep sequences
(19 turns for 19x19). Typically by that time the opening stage is over and we are
observing a joseki; thus computer Go programs often include dedicated joseki books.

These joseki books consist in a compilation of sequences of play over a specific
portion of the board that are believed to be of equal quality to both players. These
are usually applied in the corners but it is not unusual to have them extend to the
sides. In such cases the openings book per se is smaller, leaving the engagements for
the joseki book.

Joseki representations only cover parts of the board to increase the probability of
rule matching. Joseki can consist of sequences of several tens of plays, and are little

60

4.3. MONTE CARLO TREE SEARCH

influenced by stones in some parts of the board. To represent them with full-board
representations is therefore wasteful.

Being deeper in the game tree, extracting joseki automatically from game records
with confidence is also harder. Fortunately, there are compilations of joseki already
made for Go in numerous forms, from physical to digital. Joseki are often shown in
full boards or showing one of the sides. This is not coincidental. The evolution of
a joseki usually means the players will exchange influence over certain directions of
the board. If to one direction the wrong player already has a very strong presence
the joseki may be completely misread, with the stones encircling themselves.

Because of this a joseki cannot be a simple rule with a partial state representation
covering a corner or side, but include information, to the extent that is deemed
reasonable with the available resources, that hints to the influence of the players in
different directions from the joseki.

Joseki compilation and evaluation is not present in Matilda yet. When added it
should prove invaluable for 19x19 Go.

4.3 Monte Carlo tree search

4.3.1 Move selection

Matilda uses prior values as progressive bias, UCB1-TUNED bias, [LGRF, [RAVE and
criticality in move selection. We call this Heuristic UCT-RAVE for brevity.

When a new game state is found all its legal plays are discovered. To reduce
the branching factor a few tactical checks are performed that prohibit playing in
own eyes and simple eye shapes, producing ladders, playing in liberties of groups
in seki and producing bad self-ataris (throw-ins@ and filling opponent eye space are
allowed). Plays near nakade are also prohibited (the non-vital points), as well as
in safe shapes that can become eyes, and in long eye shapes of a minimum length.
To further reduce the branching of the search when killing opponent groups some
fillings of eye shape in miai are only left with one possible play. A notion of area of
influence was also experimented with, that discouraged the exploration of zones of
the board that are already very likely to belong to the player, but it was very crude
and is not currently being used. All plays further than four intersections from a stone
are prohibited (with the exception of opening plays). This last restriction is aimed
at larger boards.

Besides the fast tactical solver for simple ladders — directed at the heavy playouts,
two more exhaustive solvers are used in the state expansion of UCT. These discover
if a group of stones can be attacked and killed, or made safe, and the plays involved.

2Sacrificing a stone to ensure the opponent can’t secure an eye.

61

4.3. MONTE CARLO TREE SEARCH

ABCDEFGHJ ABCDETFGHJ

= N W s 01O N 00 O
= N W B~ 01O N 00 ©

ABCDEFGHJ ABCDETFGH

Figure 4.2: Move pruning by black (left) and white (right)

Move pruning is exemplified in Figure[4.2l Plays at intersections marked with an
X are prohibited for black to play (left board) and white (right board). It includes
disqualifications by the suicide rule. One of intersections a is disqualified at random
(they are a low importance miai). More advanced tactical evaluations that notice, for
instance, that the large black group has at least two stable eye shapes and therefore
cannot be killed; thus allowing prohibiting plays in both a intersections, are not
performed.

If a legal play is not disqualified by the above restrictions, it can be either en-
couraged or discouraged with prior values. The following prior values heuristics are
used:

1. Edge heuristic.
2. Even-game heuristic.
3. Nakade heuristic.

4. Avoid producing kos when another ko is not active. The reasoning is in at-
tempting to save ko threats.

5. Avoid self-ataris.

62

4.3. MONTE CARLO TREE SEARCH

6. Extension heuristic — favor extension plays that increase the minimum number
of liberties of a neighbor friendly group.

7. Atari heuristic — favor safe plays that put an opponent group in atari.
8. Capture heuristic — discriminated by number of stones captured.

9. Favor safe plays that match the patterns used for the playout policy. These are
applied in the entire board instead of just around the last play.

10. Favor plays in the neighborhood of the last. The definition of neighborhood
includes the liberties of adjacent groups.

11. Favor plays in the 3rd line and discourage plays in the 2nd and 1st lines@, if
without neighbor stones. This heuristic is only used in larger boards.

12. Use the trained [MLPI to favor and discourage some of the plays.

Most of these heuristics are in some way present in other programs. The use of
large handcrafted patterns, 4x4 and 5x5, that suggested multiple plays was also used
for some time in Matilda. With time the most important use cases were identified
(defending and attacking eye shape, and reducing the search branching) and the
use of these patterns was replaced by the above programmatic checks. The efficient
application of patterns of these sizes was very memory costly.

Move grouping

The last experiments performed in Matilda pertain to move grouping. The idea is in
not considering the full branching options in poorly visited states, instead grouping
plays believed to be similar in outcome.

In Matilda the technique used separates move group statistics from move (play)
statistics. When a state is first visited its possible plays are grouped in move groups.
In the selection phase of selection is performed first among the move
groups, and then among the moves of the selected group.

In the propagation phase move group statistics are updated as normal, poten-
tially updating and [AMAF information several times. If the number of visits
reaches certain thresholds, the move group is further divided into two, until the
group consists of only one play.

This technique speeds up selection, since in most states only part of the transi-
tions are evaluated. Solutions to move grouping have to ponder on these problems:

3Counting from the edge of the board. The 1st line is the border.

63

4.3. MONTE CARLO TREE SEARCH

1. Play grouping — intuitively grouping plays that are more similar should produce
better results.

2. Move group selection — if the[UCT] selection of move groups is simpler than the
selection of plays, the exploration of very expanded states will be hurt.

Saito et al. perform grouping based on simple feature groups [SWUHO7/] (prox-
imity to last move and to border) but it is sensible to expand the criteria to more
interesting features. Childs et al. experiment with overlapping groups [[CBK0S]],
which make possible the mixing of non-exclusive features. Good results were ob-
tained with the authors noting that the grouping criteria is very important.

In Matilda we’ve experimented with random grouping, grouping based on MC
quality and grouping based on[MC visits. Group selection has been tried using both
UCB1 and UCB1-TUNED, with and without [RAVEL All results have been very poor;
we hope to further research this topic in the future, with more interesting grouping
criteria.

4.3.2 UCTHT structure

The details of how the information necessary for[MCTSlis stored and managed have
been omitted up to this point, but a competitive Go program has to place a great deal
of attention in the efficiency of the structures and their maintenance — tournament
games can be played with long thinking times, and it is important for a program to
be able to use the time available correctly.

This problematic can be divided into a number of decisions the developer has to
ponder on. Some of these are not independent of the others.

1. Whether to store statistics (wins/losses) on each search tree state or transition.
2. What state information to keep; and if it allows testing for superko.

3. Whether to use a tree-based structure, hash table, or something else.

4. How to perform structure maintenance with safety.

5. Whether to detect transpositions, and how.

On storing statistics on transitions

Most[MCTSlformulations apply to game states. The propagation of playout outcomes
affects the win rate at each game state (its state quality) and a transposition occurs
when from two states we arrive at the same state. When this occurs and we arrive

64

4.3. MONTE CARLO TREE SEARCH

at that state, it is already populated with some playout outcomes. It can be said that
two sequences of play become one from that state forward.

This formulation, however, makes very inefficient the phase of selection. On
selecting the transition from a game state we need to lookup the qualities of all the
destinations. If instead we store statistics on transitions instead of states, we benefit
from cache locality on this selection. The upside is that we waste memory on yet-to-
explore transitions (which are in every leaf game tree node). Two sequences of play
now only unite after arriving at the same state; since the parents of that state have
different qualities — transition qualities — for selecting transitions that arrive at the
same state.

State information

Before discussing the detection of transpositions it is necessary to identify the infor-
mation needed as representative of each game state. if we only store the contents
of the board we are not detecting kos. Luckily to detect kos we only need to add
the information on the last capture of a single stone, if any has happened in the last
turn.

Detecting superkos, however, is much more difficult. Detecting superkos requires
testing the contents of the board with all the previous states of the game. If we
support transpositions, then there are parts of the game tree that are known — the
plays played already in the current game; and parts that are variable — the plays
played in that may contain alternative sequences of play that arrive at the
same transposition.

Therefore with transpositions, even the best efforts to catch and disqualify su-
perko-leading plays in[MCTS]are not perfect. Most programs do not attempt to tackle
superkos in [MCTS] or do so without detecting transpositions.

Data structure

Having decided on our storage of statistics and state information, we still need to
decide on a data structure to hold this information.

When traversing a game tree we need to quickly select the next state to
follow. We can improve this by storing statistics on game transitions instead of states
themselves, and we can advance the state by either playing out the game on the Go
board, or just following state references.

If we choose to advance the simulation by playing out the game, we need to find
if the resulting state is a transposition of a previously found state. With a hash table
the process of finding if a state already exists and finding a transposition are one
and the same. With a tree-based approach there is an implicit path to a state, and

65

4.3. MONTE CARLO TREE SEARCH

following a transition is unrelated to finding if the resulting state is a transposition
of another.

Because of this, if transpositions play a big role for the problem at hand - i.e. if
there is a lot of information to be reused by discovering them — then a hash table
based structure is recommended. If they are not that important we can use a tree-
based structure and take advantage of faster state transition following.

This problem is made less clear when considering state maintenance. With a hash
table approach we essentially have weak links between states. We can free game
states knowing full well that if they were to be actually useful they will be remade
when a lookup fails to find them. When using hard links (memory references) in a
tree-based approach we are impossibilitated from freeing deep nodes: only shallow
nodes that have no references to them can be freed.

Structure maintenance

This brings us to the problems of game tree pruning with safety. There are at least
three moments when we may want to perform pruning:

1. The game has ended; all memory can be freed.

2. The turn has ended. Upon choosing a play we can free the states that are not
descendants of the resulting state.

3. We have run out of memory; we may opt to free part of the game states that
we deem less useful.

The first moment is trivial. The second moment is possible with both tree based
and hash table structures.

With tree based structures we can traverse the subtree from the state that is now
the current state of the game, and mark their nodes. Afterwards we can free all
states not previously marked. We require however a method of traversing all states
independent of their tree organization.

With hash table structures the most efficient method is in recording the maximum
depth each state is found at, and freeing all states bellow depth 2 — for two player
games. We are freeing the states of the current player and the opponents because
we will be starting a new search after their reply.

The third moment poses the most problems. First we need to be able to estimate
the usefulness of a state. Mere depth it is found in the game tree is a poor indi-
cator, since we want to search promising sequences of play deeper. If we attribute
usefulness to probability of being traversed, we can free the states that have been
traversed least recently.

66

4.3. MONTE CARLO TREE SEARCH

Such a pruning technique will probably cause many of the recently freed states
to be explored again since they were probably in the edges. It is also very difficult to
perform this pruning solution with memory safety when using hard links. Because
of this, this pruning moment is usually not considered. Programs instead simply stop
the search that turn when running out of memory.

Programs that insist on continuing the search but without expanding and adding
new states to the tree; essentially only performing more random playouts, are often
victims to the horizon effect.

Transpositions detection

Transpositions can be of four types:

1. Permuted plays — we arrive at the same state by following the same set of plays
but in a different order.

2. Passing — we arrive at the same state after the opponent passes, if both players
share the same game tree.

3. Repetitions — a previous capture made it possible for a ko or superko violation,
and we’re not preventing these.

4. Board transposition — two states are shown to be equivalent when performing
color flips or matrix transpositions on the board.

Permuted plays and transpositions by passing are transparently detected when
using a hash table, but it requires performing lookups at every transition. Using
a tree-based structure a common, partial, solution is searching the relatives of the
current state for transpositions. This method catches most of the transpositions but
is also not very efficient.

Ignoring transpositions, as uncommon as they are, may also bring other benefits
such as using separate data structures for each player, thus speeding node lookup
when using hash tables.

Implementation in Matilda

Matilda uses a compromise between the options above. It is justified by some general
observations:

1. Memory is cheap. Although matches may take a long time, it is very difficult for
them to use more memory than currently available for consumer grade elec-
tronics. Systems used for tournament play are also considerably more power-
ful. If running out of memory in long matches, a possible solution adopted by

67

4.3. MONTE CARLO TREE SEARCH

many programs is in only performing state expansion after a minimum number
of visits. Matilda also makes use of this.

2. Maintenance on demand is expensive. It is particularly expensive when con-
sidered that it may not bring any advantage, and instead provoke an horizon
effect.

3. Transpositions are rare, but they still happen. Transpositions by permuted play
are particularly important, although with AMAF/RAVE] at least some informa-
tion is shared.

With this in mind Matilda uses a state representation without direct support for
superko testing, that stores statistics relative to the transitions instead of the game
states, and uses both a tree structure and a hash table. The tree structure is formed
of hard links between states, and the hash table is maintained on the side to discover
the states with which to hard link. This way the transpositions table is only subjected
to lookups the first time a transition is traversed.

The[MCTSlalgorithm is performed iteratively, instead of recursively, and a stack of
state memory pointers is saved and used to detect situational triple ko and quadruple
ko violations. Situational is more strict than the positional definition used in Chinese
rules — requiring the same player to play for it to be a repetition; and triple and
quadruple kos are the shortest of superkos — repetitions to the states four and six
plays back, respectively. Superkos are very rare, so this is mostly useful to better solve
life and death in the endgame as cost effectively as possible. It is also important to
prevent superkos when using virtual loss — to avoid erroneously updating the same
transition several times. Context-wise Matilda prohibits positional superkos instead
of situational, and all types of superko, not just the ones mentioned above.

When a superko is detected, the simulation is scored a loss to the player who
played the illegal play. This discourages the superko producing sequence without
prohibiting the repeating state altogether, since it might be valid through a transpo-
sition.

To ensure memory safety Matilda doesn’t perform maintenance on-demand. If
the program is misparametrized for the system and time control settings, and runs
out of time in the middle of its turn, the[MCTSlis stopped early. This avoids triggering
the horizon effect. Some programs are more advanced and can detect the occurrence
of the horizon effect mid-search, and search a few plies deeper from the offending
state.

The hash table used is also separated in two, one for each player. This means
there is no confusion on the legal plays of each player and that lookups are also
faster. Transpositions by passing, or superko repetitions with different players are
therefore not detected.

68

4.3. MONTE CARLO TREE SEARCH

This solution makes a compromise between the transpositions detection of using
hash tables, and the speed of following tree hard links, which scales better with
board size.

Maintenance between turns consists in freeing the states not found in the subtree
with the current game state as root; which gives us flexibility in performing main-
tenance even if Matilda is put to play against itself. Using only a hash table and
freeing states by maximum depth found is a poorer solution since a great number
of states are not freed many turns past their need. This method of maintenance,
without maintenance on-demand, has a very negative impact on program strength.
In terms of performance there is little (but positive) advantage to a tree and hash
table versus hash table only structure.

The hash tables are indexed by Zobrist hash and verified by board contents plus
last eaten stone (for ko detection). This means transpositions through matrix trans-
position are also not detected. The impact of this is small since a game state, past
the very beginning of the match, becomes very unlikely to match other states found
in the search. Coupled with the fact that considering transpositions of this type
would require state reductions and full hashes at every turn, instead of Zobrist hash
updates, made this an easy decision to make.

The hash tables also use simple linked lists for buckets.

4.3.3 State representation

When making a high performance computer program for traversing state spaces, a
lot of time goes into the structures and primitives for their transition — ensuring the
execution is as fast as possible while fulfilling the minimum requirements for playing
Go and satisfying tactical analyses.

When presenting the information kept for UCT+T| we specified the need for the
description of the board contents and the information necessary for the detection of
kos.

The generic, multi-purpose board representation in Matilda is shown bellow, con-
sisting of a description of the contents of the board in terms of stone color, and in-
formation on the last play played and stone captured if the last play caused exactly
one stone to be captured.

1. Board contents for every intersection, i.e. if occupied and by a stone of which
color.

2. Intersection last played (or illegal if last play was a pass).

3. Intersection last eaten a single stone (or illegal if a single stone was not eaten).

69

4.3. MONTE CARLO TREE SEARCH

The last eaten position is used to detect ko violations without a full board com-
parison. A play at the last eaten position is a ko violation or suicide if it doesn’t
result in a multiple stone capture. The last played position is useful for heuristics
that require a measure of proximity between plays.

This simple representation is enough for most things, but for the algorithm,
internally, more information is necessary. Next is shown the structure of a transposi-
tions table node, that as expected includes gathered statistics from the playouts and
via [AMAF];, with other fields for maintenance purposes.

1. Board contents (black stone, empty stone or empty)
2. Intersection last eaten a single stone (or illegal)

3. Zobrist hash

4. Total state visits for MCTS]

5. Information on legal transitions for the player

And the transition information includes the statistics necessary for criti-
cality, effectivity, LGRF|, and hard links for the formation of the game tree, for every
playable transition by the player the node belongs to:

1. Board play coordinates.
2. Coordinates for [LGRE
3. Statistics for [UCT], AMAF/RAVE] criticality and effectivity biasing.

4. Identifier of destination state to avoid hash table lookup.

This transition information is of course subject to the game state and playing
player (which is identified by the hash table the node is stored in).

Matilda implements this using one-dimensional arrays. 1D arrays for board rep-
resentations are popular in Go, because it is possible to codify extra buffer zones,
marked as out of bounds, and not have to explicitly test if an intersection in inside
the board. This is illustrated in Figure 4.3l Every legal intersection (clear) is sur-
rounded in the 3x3 neighborhood by a legal or illegal marked intersection (gray) if
the matrix is laid one dimensionally from top to bottom, left to right.

This may make for more efficient code and is described by Miiller [M02al].
Matilda does not implement buffer zones, just 1D arrays. This was because it was
felt that these techniques would perform better for expand-and-apply strategies —
where from a certain intersection we want to discover intersections that share some
attribute. Since Matilda from the start avoided these strategies because they were

70

4.3. MONTE CARLO TREE SEARCH

Figure 4.3: 2D representation of 5x5 1D layout

less efficient, adding the extra complexity and memory burden of buffer zones was
believed not to be worth the effort later on. It is possible that in the future, tech-
niques are implemented that would make this board representation more attractive.

A description of Go state with just stones on a board is enough for light use, but it
is not very efficient for techniques that require liberty counts or atari testing. In com-
puter Go, a commonly used abstraction is that of the [Common Fate Graph (CFG)|
are suitable for problems that can be simplified by uniting constituting parts
because they have a common fate from that point forward, like stones in a group in
Go. AICEGis often represented as an undirected graph where the nodes are groups
of connected stones and the arcs immediate connections between enemy groups.
Sometimes empty intersections are also represented, which makes group captures
very efficient (the inversion of a group label, color to empty). are colored, with
nodes of the same color being united into the same node, sharing arcs.

In Matilda the following items are used, that make a[CFGlwithout empty groups.
It is also complemented by fields that are kept up to date for performance reasons,
like a list of all empty intersections.

1. Board contents.

2. Position last played or illegal (if passed).

3. Position last eaten a single stone.

4. Zobrist hashes of neighbors of each intersection.
5. List on empty intersections.

6. Number of neighbors of each color in the 4 and 8-intersection neighborhood.

71

4.3. MONTE CARLO TREE SEARCH

7. Group information.

A group in Go is formed when stones of the same color touch, and is represented
in Matilda with at least:

1. Color/Owner.
2. Number of real liberties and their bitmap.
3. Number of stones and their coordinates.

4. Number of neighbor groups and their references.

These structures are used to efficiently tell if groups are in atari, and provide
information on liberties and stones captured for the various tactical functions. Real
liberty counts are used, in contrast with pseudo liberties. Pseudo liberties refers to
a counting method that some programs use. It allows quickly answering whether
a group is in atari, but cannot be used to provide a trusted value of liberty counts,
and is also impracticable to answer on the state of a stone after playing (without
simulating the actual play and captures). Programs that use pseudo liberties usually
feature faster playouts and heuristics that don’t rely on exact liberty counts.

It may seem inefficient to have a bitmap of the positions that are liberties, given
that on average most groups will have a very low number of them. It is, however,
made efficient by the use of a memoization table of bits for a byte-sized value and
the ability to use simple bitwise operations when uniting groups of stones.

Since the playouts occupy much of the time spent by an Go program,
there have been many attempts to provide fast playouts and still have the necessary
information for the most demanding heuristics. In Matilda an array of all the stones
belonging to a group is also used. It improves on the speed of group captures.

While this solution is simple, it is still insufficient for the most costly operation
of our playouts: simulating a play and counting the resulting group liberties. When
we simulate a play that captures something, and that capture makes liberties for
another neighbor group of the placed stone, we would need to have the number of
stones in contact between the groups. Fortunately, there are two observations to be
made:

1. A capture of a single stone group that touches a neighbor friendly group is only
a single liberty to the resulting group.

2. A capture of a multiple stone group that touches a neighbor friendly group
contributes at least two liberties to the resulting group.

72

4.3. MONTE CARLO TREE SEARCH

As such, even without label information on the stones in neighborship, we can
often guarantee that a group has at least two liberties, and is therefore safe to play
at. The safety of a play is the most often test made — real liberty counts are less often
needed in Matilda.

We also don’t make use of the notion of empty group, which makes captures po-
tentially slower, but simplifies placing stones and dealing with liberties. In essence
stone groups and empty groups are very different in how the fate of their intersec-
tions is not similar.

Following the minimalist approach of Matilda, both the simpler board structure
and the are implemented. This allows using the best tool for each task and
ensuring the good behavior of both implementations via unitary testing. The game
representation is also complemented by a cache of play information in the playouts
of The reuse of this information allows much faster heavy playouts. This
cache is unique for each player and is simply an array of bit masks, that contains the
following information.

dirty

play is legal

play is put_in_atari
play is_safe

play captures

play matches pattern

The bit fields should be self-explanatory. This information is kept up to date
for every legal position of the playout, with the efficient recalculation only of the
potentially affected plays.

4.3.4 Heavy playouts

The use of heavy playouts has already been introduced in the playout phase section.
Our aim is not to produce strictly more high-level play simulations, but more realistic
simulations — that better represent the outlook after a certain point in the game tree
(where we started the playout). Because of this the use of more advanced domain
knowledge is not necessarily useful, or useful enough to deserve its performance
cost. The playout phase is where a program spends the vast majority of its
time. It is essential to find a good balance between value of information and time
spent.

Of the two families of methods introduced prior, probability distribution selection
based on trained features, for the purpose of guiding heavy playouts, seems to be
the most promising method right now. Having said that, both methods have been
implemented in Matilda and the use of handcrafted patterns has outperformed the
other.

73

4.3. MONTE CARLO TREE SEARCH

Handcrafted policy

The program MoGo is not open source, but a description of its patterns was pub-
lished [GWMTO06]] and was transcribed to the pattern code used in Matilda. Patterns
from the program Michi, which are slightly different from MoGo’s, were also tested.
The code used to represent patterns is a subset of the one popularized by GNU Go,
which should make the patterns immediately recognizable by computer Go program-
mers.

While in the playout phase, each player plays until both players pass in a row,
their difference in stones is too large (mercy threshold) or they’ve run past the ex-
pected amount of turns. When this happens it is usually the sign of a superko at
the end of the game. Regardless of the method of stoppage, a playout outcome is
always returned. Matilda doesn’t award no-results, following the idea that even a
worse than normal playout is biased towards the real outcome distribution.

When selecting each play, plays that are in own eyes, simple eye shapes, ko or
suicide violations and easily refutable self-ataris are disqualified.

Play selection is thus performed by testing the following conditions. The first
condition that is satisfied yields one play randomly from the set of plays that satisfied
it, with equal probability.

1. Play a saving play (make a neighbor friendly group in atari become safe) in
the neighborhood of the last play. Making it safe can be either by extending
the group one stone, or by capturing the threatening opponent group.

2. Play a nakade anywhere on the board.

3. Play safely at a board intersection nearby the last play, if it matches a 3x3 hand-
crafted shape. The shapes have different weights for play selection (probability
distribution is used).

4. Play a capturing play anywhere in the board.

5. Play a random legal play, biased to selecting a play in an intersection without
neighbors.

These simple rules require some tactical analysis, namely whether a play is safe,
enumerating the liberties of a group, its neighbors, etc. As shown before a cache
is used to reuse play attributes efficiently. For extra performance the 3x3 shapes
are first expanded when read by Matilda. The shapes as written by a human are
formed with generic symbols, such as a position being matched for own stone or
empty. These rules need to be substituted. On startup they are expanded until we
obtain real, possible configurations. They are also rotated and flipped and saved

74

4.3. MONTE CARLO TREE SEARCH

duplicated — one hash table per player. This allows the process of reading a board
position and its pattern match lookup to be very efficient.

To avoid having to transpose a part of the board, with attention to its boundaries,
to generate a pattern representative; Zobrist hashes of the 3x3 neighborhood of each
position are maintained in the board representation. This was introduced before and
is a technique popularized by GNU Go and other programs. In Matilda it is faster,
but not a critical improvement, unlike attribute caching or the use of a

Trained policy

The training of feature qualities for a playout policy was performed for Matilda but
was not shown to be more effective as of yet than the handcrafted policy. For training
feature qualities both a simple frequency method — where the quality is the result
of the observed likelihood of the pattern being selected in states where it appears —
and Rémi Coulom’s algorithm [[Cou07]] were implemented.

It is still too soon to select the list of features to be used in Matilda, because
up to now testing has been made with a constant number of playouts, disregarding
the feature time cost, but Matilda is currently using the following feature list. All
features have a single possible value except for the trained 3x3 shapes.

1. Contiguity to the last play (in the eight intersections around it).
2. Play is a non-capturing self-atari.

3. Play is a capture.

4. Play is safe and contiguous to a friendly group in atari.

5. 3x3 shapes centered on prospective play.

Training was performed over a set of 2465 even-matches from the KGS collection,
of the years 2001 and 2002, with no restrictions on rule set or komi, containing
479994 game states (not necessarily unique).

Currently Matilda is using a MoGo-style playout policy with probability distri-
bution only if the play is selected from the matching of 3x3 shapes. The weights
are trained with Minorization-Maximization and consulted for every expanded 3x3
shape. If the weight of a shape in particular is very close to zero, that shape is
discarded.

Since Matilda does not impede superkos in the — both in the tree and in
the default policy - it is possible for the program to fall into infinite cycles. This
is naturally undesirable, and the simplest solution is to use a maximum depth cut-
off point — where tree traversions or playouts that take longer are stopped and the
outcome of the simulation returned as is. This solution however can produce an

75

4.4. TALLYING THE SCORE

anomaly similar to the horizon effect: if the cutoff depth is constant, and we are
performing simulations from the same root state that can produce a superko, and
if we are unlucky and the superko situation can influence the simulation outcome —
then by stopping early we are awarding one outcome overwhelmingly; whereas if
the superko continued further it could benefit the other player. The correct behavior
— if we can’t detect and avoid superkos —would be to null the superko involved stones
and return an outcome irrespective of it.

This is what is indirectly accomplished in Matilda. In the playout phase the simu-
lation max depth cutoff point is not a constant value, to allow randomness in superko
resolution. Repetitions by superko take several turns and this method distributes the
moment when the repetition is stopped so it doesn’t always favor one player.

4.4 Tallying the score

Tallying the score — as in the ability to evaluate the final score of a match — can be
a challenging problem for a computer Go player. Be reminded that the score in Go
is usually the result of an agreement between the players; and computer programs
are not known to be flexible. The score is usually tallied near the end game, ei-
ther because the match ended or because a search algorithm (like needs the
outcome of a playout, for instance. This second scoring necessity doesn’t require a
perfectly precise score of the match — more often than not a faster algorithm that
can give a sensible estimate is preferred.

On the other hand, the official match score has to be provided as accurately as
possible. One possible way of tallying the score is to find out the stones that are
unconditionally alive, i.e. the stones that can’t possibly be captured by the opponent
if not for own mistake, no matter how many turns in a row the opponent plays.
Having the groups of alive stones, one may be tempted to count all the intersections
inside those groups as belonging to the stones player.

This method of counting territory is suggested in the Tromp-Taylor rules. These
do not form a rule set by themselves (they are more of a reformulation of Chinese and
New Zealand rules), but provide some insight in how to resolve disputes in scoring,
and simplifying the game of Go overall. This is particularly useful for computer
players.

The difficulty in scoring lies when an opponent resigns (as often human players
do) while the board is still very empty. By the scoring solution proposed above only
the stones unconditionally alive would be useful to delimit area, which may produce
extremely erroneous results in the early and mid stages of the game.

Unfortunately there is no elegant solution to this in Matilda. After a resignation
the only scoring that can be made is by imagining what the game would look like
if it continued, being played by perfect players. If the player that resigned indeed

76

4.4. TALLYING THE SCORE

was right to resign she should be unable to score a win. Some elaborate attempts at
tackling this are present in the programs Explorer and Steenvreter, that use either an
heuristic analysis or a trained [MLP] respectively. Most programs however estimate
the final score in these situations by assuming each stone has an influence area,
and that disputed intersections more influenced by one of the players belong to that
player. This approach cannot solve disputed areas with no nearby stones, and special
considerations for groups in seki are needed.

The Matilda implementation contains four distinct methods of scoring, detailed
here. The first, fastest and more prone to err, simply counts all the stones for either
side. The second, besides the stones placed on the board, also counts proper eyes.
Naturally these two are useful in providing very fast estimates, since they almost
don’t tally territory, which is essential in both Japanese and Chinese scoring.

The third implementation, more time costly, identifies for every group of empty
intersections, the colors of the stones adjacent. If only one variety of stones is adja-
cent then the territory is tallied as that color. This scoring method correctly deals with
encircled territory but doesn’t recognize dead groups of stones, and by not removing
them, ignores trivially disputed territory. This method is the exact implementation of
area scoring, assuming the players will play through and kill dead groups of stones
before ending the match.

The final implementation performs a [MCTS|from the current board; not to select
the best transition for the current player, but to estimate the final state of the game
when well played. Afterwards each intersection assumes a stone of the player that is
most likely to occupy it at the end of the simulations. Very disputed intersections are
marked empty. Finally over this new board disposition area scoring is performed.
This method is much more accurate in estimating scores when the board is still
partially empty, but is also much slower by having to perform hundreds of thousands
of simulations. Because of this it is only used when requested via or when
writing files for instance; in everything else in Matilda faster score estimates
are preferred.

An alternative approach by simulation is used in GNU Go where the game is
actually played to the end, turn by turn. This approach can be much more time
consuming when the board is still close to empty.

Figure [4.4] shows an example game state (top left) with white to play. It was
evaluated using the second, third and fourth methods (top right, bottom left and
bottom right boards). The stones on the board mean the intersection was counted
for that stone’s player. Empty intersections benefit no player. The final method
correctly identifies that in the bottom right the black stone a was nakade, killing the
white group and eventually solving the seki at the left. At the top it identifies that
white can capture the three black stones, securing liberties to then kill the top right
group, if it first plays b, ensuring black cannot make two eyes.

77

4.4. TALLYING THE SCORE

ABCDEFGHJ ABCDETFGHJ

P MR S

HOOOOOIRY +
: [@O0® (1
gL X
> OB 8
Poe, S&runt

ABCDEFGHJ

ABCDEFGHJ

@ @
alele e+
Josisisieite:
. [eee
10088000«
000, . 9000
; A
: [LC8C0TTC

ABCDEFGHJ ABCDETFGHJ

<&

Figure 4.4: Scoring examples

78

4.5. RESULTS

Although none of the implementations formally identify liberties of groups in
seki, the final implementation quite robustly deals with seki and capture races which
are typically hard problems to solve. It is still lacking in more complex positions with
multiple ko threats, and long superkos (the quick simulations do not test them) and
of course is still weaker an estimator the emptier the board is.

4.5 Results

4.5.1 ANN for state evaluation

On tuning the weight distance p used in training for state evaluation, it was
found that maximum distances as short as 6 are not unreasonable. Choosing a small
distance provides both benefits for the generalization ability of the network as well
as the number of connections, and therefore the time needed to compute the net-
work. More important than finding the optimal value for training the network, it is
important to take its computation time into consideration and tune the distance as
part of the final algorithm.

In Figure are shown the median ranks of the best play, for networks trained
with maximum receptive distances between 6 and 10, over 10 epochs. All tests
shown are for 19x19. All networks use the same constant learning rate of 0.002.

The median rank consists in the median rank of the output energy at the coor-
dinate of the selected play, in the example from the data set. It is a better indicator
than the average because it is common for the majority of poor plays to be clustered
in the minimum output value possible. If several plays are tied the median rank used
is that of the middle point of their positions.

Figure [4.6] shows the accuracy of the network when trained with p = 9. The
accuracy is the probability of the network identifying exactly the selected play. This
value cannot be close to 100% without overfitting since in Go there are many plays
that are equally strong in the same situation, and the examples are also not perfect.
The use of has been able to reach accuracies over 50% in similar data sets,
when trained to predict the professional play. The accuracy of the 2-layered
used in Matilda is extremely small, but they will be used for general guiding, with a
focus on urgency instead of exact best play.

Figure[4.7] (pagel81)) shows the selection probability for the same network trained
with p = 9. The selection probability is the probability of the play selected in the
example being in the top 25% legal plays (ignoring ko). This groups varies with size
and play legality, being therefore example dependent. In actual the number
of candidate plays will be lower — since repetitions and tactical information is taken
into consideration — increasing the accuracy of the[ANNl This is the best indicator of
adequacy of the [ANN] for Matilda before actual gameplay testing.

79

4.5. RESULTS

80

Median rank of best play

72

70

68

66

64

62

60 I I I I I

Epoch

Figure 4.5: Median rank of best play by distance

Accuracy

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000 , . .
0 10 20 30

Epoch

40

Figure 4.6: Accuracy at selecting best play

4.5. RESULTS

0.44

0.42

0.40

0.38

Selection probability

0.36

0 10 20 30 40

Figure 4.7: Probability of finding best play in top 25% legal

Comparison with SANE

To be able to compare the different methods of producing Go evaluation neural
networks, the evolved networks via [SANE| were also subject to testing against a test
set. The results shown in Figure [4.8] (page clearly show how the networks fail
to improve even after long periods of time. By our estimates a minimum of 5000
generations should be needed to evolve the networks by SANE, though by the 3000
generations shown here some improvement was already expected.

The networks trained via the method are so poor that they didn’t evolve
to consistently understand that one of the input bits codified a playable intersection,
which is evident by the median rank of the best play being higher than 122 (average
of legal plays of the examples in the data set).

At first look it can be thought that computing the[MLP|can be made more efficient
by, after a play, only computing the parts of the network that have been modified.
This is actually not possible, given the nature of the[MCTS|algorithm. In[MCTS|when
a new state is created, and initiated with the estimate from the [ANN] a playout
is performed and the search ended. The next search is unlikely to stop at exactly
the descendant of the previous state, and as such the codifications between
the two states cannot be relied to be similar. To perform this optimization a burst
modification to the algorithm could be made, where the search doesn’t stop at the

81

4.5.

RESULTS

— — sane-tournament

sane-opt-rnd

170

168
166
164
162
160
158+
156
154
152+
150

Median rank of best play

|
500

|
1000

[
1500
Generation

|
2000

|
2500

3000

Figure 4.8: Median rank of best play with SANE method

Board size | Win rate | Games | Avg turns | Avg time
9x9 91.6% 136 88.2 271.6s
13x13 33.3% 216 149 456.5s

Table 4.1: GNU Go 3.8 (B) vs Matilda

first new state found.

4.5.2 Strength at playing Go

Matilda was tested for its strength with and without the trained [MLP as prior values
heuristics. In table the strength of Matilda without[ANNI priors can be seen from
playing against an external program. It was run against GNU Go 3.8 level 10 (default
difficulty) in 9x9 and 13x13 boards, with 5 and 10 minutes per match respectively

— sudden death. Komi was set at 7.5 stones.

The table above shows the win rate for Matilda when playing as white (starting
second), the number of games played, the average turns per match and the average
time Matilda used. The matches last longer than usual because GNU Go doesn’t

resign when losing.

82

The board sizes were chosen for being the most popular (minus 19x19, see bel-

4.5. RESULTS

low). The time settings were chosen for being the time controls used in the Computer
Go Server (CGOS). The opponent was chosen to be GNU Go for several reasons:

1. It is relatively strong (even if not champion level anymore) while still playing
very fast. This is important for running benchmarks fast. On the CGOS GNU
Go 3.8 is ranked above 1800 ELO.

2. It is free software, well documented and amply used in previous Go research
as a comparison opponent.

3. It has many configuration options that are useful, like being asked to capture
all stones instead of passing in the end of the game, to simplify scoring.

For reproducibility, GNU Go 3.8 was compiled using the default settings, and ran
with the options to activate Chinese rules with positional superko, as well as allowing
resignations (so the matches are ran faster).

These results were obtained using opening books imported from Fuego and Pachi,
Heuristic UCT-RAVE with criticality, [LGRF, virtual loss; without effectivity, grand-
parent knowledge or the use of dynamic komi. Thinking in the opponents time is
enabled, although GNU Go plays very fast for this to have a significant impact.

As can be seen, Matilda is currently much stronger in smaller boards than in
larger ones — so much so that the benchmark for 19x19 was omitted; the win rate
would be too close to 0% to be representative. A number of possible improvements
are shown in the further work section of the conclusion. The comparison with the
use of for prior values should be read with a grain of salt, since the impact
of a technique benefits from the absence or unsuitability of the others. The use of
priors should be less beneficial in programs already better prepared for larger
boards.

In this work, the [ANN] calculations do not make use of GPU yet. Because of this,
and because it is expected that an[ANN|to be used in Go would make use of GPU, the
comparison with using[ANNI priors was performed with self-play and with a constant
number of simulations per turn. The games were played with 10000 simulations per
turn maximum, 7.5 komi and with the players alternating colors. No state expansion
delay is used (and thus 10000 simulations equals 10000 playouts, except if a superko
is detected).

Table [4.2] shows the win rate for the version using [ANNl priors. The average time
relative pertains to the time used in comparison to the faster version without[ANN] -
the performance impact of priors without GPU computation. Take into consid-
eration that tests with a fixed number of playouts per turn and in high concurrency
have their performance suffer when the playouts take longer, because the impact of
the virtual loss is felt more.

83

4.5. RESULTS

Board size | Win rate | Games | Avg turns | Avg time relative
9x9 49.8% 257 48.6 1.07
13x13 51.8% 863 78.6 1.24
19x19 52.4% 124 147 1.37

Table 4.2: Win rate with ANN priors (self play)

With the time and resources available it was also impossible to tune all param-
eters, heuristic weights, constants, etc. Our best efforts were employed but tuning
was mostly performed for 9x9. Tuning in 13x13 was performed almost only on
heuristics only active for larger boards, such as preferring plays away from the sides
and without neighbor stones. Parameter tuning for 19x19 wasn’t performed at all,
including the use of ANN] priors.

The strength change by the use of ANN priors is barely positive without any
complex domain knowledge needing to be computed. For a strength impact this
small this solution is probably inadequate for domain knowledge rich programs.
Also as expected the impact does not correlate linearly with the board size.

4.5.3 Data set used

In this work, collections of game records were used for the extraction of knowledge.
From the KGS Go Server game records between 6d players, or with one of them at
least 7dH, were obtained from u-go.net on the 18th of May, 2015.

Another collection of professional Japanese matches, mostly from the 20th cen-
tury, was also explored. Both of these collections are commonly used for training in
computer Go, but this one ended up not being used since it did not contain games
with Chinese rules. The availability of game records for 19x19 was large enough
for our uses and we could be very selective on the game settings used. For Matilda
only games with Chinese rules, reasonable komi and no handicaps were used, which
were less than 1% of the total games. The inclusion of komi also disqualifies older
games played before it’s invention.

When creating a data set for supervised learning using [ANNl every {state, play}
pair was extracted if the play was not a pass, the turn is not in the last few turns of
the match, the number of stones is bellow the threshold for using the [ANN] as prior
knowledge heuristic, the match was not started with handicap stones and finally the
match lasted a reasonable minimum number of turns.

To the unique states the most popular play is selected and the state is codified

“These rankings are specific to the server and have not been actually awarded by a human orga-
nization.

84

u-go.net

4.6. PARALLELIZATION

with information that will later be useful for the codification of our[ANNlinputs, such
as the number of liberties after playing. Each state was also rotated and flipped to
create more examples and to better train the network, since it doesn’t use shared
weights.

When training [ANN] the data set was divided into a training set (9/10ths) and a
test set (1/10th). The training set was shuffled at the beginning of each epoch. In
testing [SANE| evolved networks only the test set was used.

For board sizes other than 19x19 the game collections were made by pitting GNU
Go against itself, generating large amounts of reasonably strong play in a short time.
The strength of the play present in the data set is the more important the greater
the complexity the network can learn; so this method is not suitable for more robust
[ANNI structures.

4.6 Parallelization

This work made extensive use of multi-processor directives to better take advantage
of modern shared memory multi-processor architectures. First, the critical areas
were identified, as being the computation units where the software spent most of
its time. In the genetic evolution program this area pertained to the calculation of
the network fitnesses. In the Go playing software the most time consuming part is
related to the algorithm.

For portability, simplicity and performance, OpenMP was opted for instead of
POSIX threads or other similar solutions.

The [UCT=T] algorithm has received considerable attention for parallelization,
both for shared memory and cluster environments. Chaslot et al. identify four meth-
ods of parallelization [CWHO0S]]:

1. Leaf — upon reaching a leaf node we perform several playouts in parallel. We
wait for their completion to propagate all outcomes at once.

2. Root — each worker builds its own search tree in parallel without information
sharing. When the time available ends the play is selected based on the sum
of all individual searches.

3. Tree with global exclusion — all workers share the same search tree but only
one can traverse it as a time. The other threads are free to be running playouts
(which have no side effects).

4. Tree with local exclusion — all workers share the same search tree with the
minimal exclusion necessary to ensure the consistency of the structures and
state information.

85

4.7. TESTING

The first method is perhaps the simplest, but wastes more time on the synchro-
nization of the worker threads since we have to wait for the completion of the last
playout; and the elapsed time may vary greatly. Root parallelization excels in cluster
environments since almost no information sharing is necessary. Tree parallelization
allows keeping a great number of worker threads active in shared memory. If local
exclusion is used the time locked is smaller but we may need to implement some
method of virtual loss, to promote the exploration of different sequences of play.

In experiments performed by Chaslot et al. [[CWHO8]] the best results for 13x13
were achieved with root parallelization, which is unintuitive for us. In 9x9 the results
instead slightly favored tree parallelization with local exclusion. We believe this may
have to do with the application of virtual loss. By either adding or not a virtual loss
we are either allowing the over simulation of a few transitions or the unnecessary
exploration of others, respectively. We do not have an empirically achieved middle
ground, since the bias (one loss) is an atomic value.

We have not conducted experiments on this subject. Matilda implements tree
parallelization with local exclusion and a virtual loss. If support for clusters is later
added it will probably be in the form of root parallelization, with tree parallelization
at each node.

For cluster environments Open MPI was also used, which is an implementation of
MPI - an API for message passing between computers registered as part of a cluster
of computer systems.

Only the [SANE method evolver was implemented to take advantage of MPI,
because of the time required to calculate the fitness of the networks when playing
against an external opponent. Eventually the difficulty in finding an available cluster,
and the use of alternative fitness calculation methods that are less time consuming
(sane-opt-rnd and sane-competitive instead of sane-opt-gtp), meant the cluster
solution was no longer essential, and was removed.

4.7 Testing

In testing competitive computer Go software four approaches are commonly used.

Perhaps the most obvious is play-testing, where the program competes against
external opponents to observe changes in strength between versions. The greater
the number of matches and the variety of the opponents the better. Competitions
against previous versions of itself can also be done. This approach is the only reliable
way of testing changes that may affect many parts of the software and unfortunately
is also very slow.

To perform play-testing, Matilda first used its own game coordinator (now re-
moved) and then twogtp, which is part of GoGui — a free software graphical interface

86

4.7. TESTING

for computer Go programs using[GTPl The board graphics in this document were also
exported to BIgX with GoGui, and rendered with the package psgo.

With twogtp hundreds of thousands of matches were played versus itself, GNU
Go 3.8 and Pachi in the last months, for the purpose of parameter tuning and testing
whole game-playing strength. This was done mostly on 9x9. While most tuning
was performed manually — trying to find a good combination of variable values —
automatic methods were also employed. One would, through brute force, test a
range of values for a few variables at a time. This was very slow and had problems
will local optima, and was soon replaced. Next automatic tuning was performed
using a genetic algorithm. It evolved a population of program configurations, using
the program win rate against GNU Go as fitness criteria. With this method dozens
of variables are configured simultaneously.

Not satisfied with the time the optimization process was taking — because of
the lengthy fitness calculation — a method of parameter optimization by UCT was
also implemented. It builds a tree, traversed using UCB1 and First Play Urgency
(FPU), and updated with the outcome of each match against GNU Go. Each node is a
variable value with its quality and number of visits. We haven’t tested enough to
assert this method as more efficient, however it has the advantage of approximating
first the variables closer to the top of the tree. This means we can speed up the
process by gradually removing the best trained variables and focusing on the others.
The use of FPU is unfortunate — since we do not have obvious heuristics for black box
tuning; however by specifying an initial guess, we can use a normal distribution as
heuristic prior values. Information sharing can also be done by storing the average
outcomes of all variable values, invariant of the path to them.

Both genetic evolutionary algorithms and UCT have been used in the past to
parametrize computer Go programs [[CWSvdHO08|/CouT2]].

Because of time constraints the application was tuned with as little as 0.3 seconds
per match, and constants dependent on search length may be misparametrized, like
the MSE b constant or minimum visits for the use of criticality.

Regression testing is an alternative approach to play testing, that saves time by
having the program solve individual problems compiled previously. This approach
is best at quickly identifying how program changes have changed the success at
answering specific sub-problems of Go, but may not have the sensitivity to discern
small changes in strength. Testing this way has not been performed in Matilda yet,
although the technical requirements are met: being able to load [SGFHfiles at a specific
point and being asked to evaluate the current position via

A third approach is the use of unitary testing. It is mostly useful with ensuring
the correctness of the algorithms and data structures after big changes. A fourth
approach is in runtime sanity checks performed when the program is compiled for
debugging instead of release. While unitary testing helps detect inconsistencies in

87

4.8. USE DEMONSTRATION

very low level and contained code, runtime sanity checks help ensure the informa-
tion processes of the program fall into their expected behavior. When compiling for
debugging the final executables are also made to include the information necessary
for profiling. For this purpose the free software valgrind was used.

4.8 Use demonstration

Matilda currently possesses two user interfaces. The text mode interface is directed
at people that want to use it locally without any external software. It is very limited
in functionality and is not very useful outside of casual play. The interface
is directed at having the program be connected to a game controller, and offers a
more complete array of options. It can also be used locally for debugging, since the
protocol is text-based.

In the past Matilda also included its own graphical mode for X11 systems, but it
was obsolete given the availability of [GTPlspeaking graphical client programs for Go.
Programs like GoGui provide many private extensions to [GTP} that allow visualizing
more information about the state evaluation that just the selected play — which was
the initial motivation for Matilda having its own graphical interface.

The output of the text programs was made to resemble the one used in GNU Go.
An example of local play with text mode is shown in Listing The coordinate
system used can also be switched between Japanese and European styles.

Debug messages are written to the standard error file descriptor and log file,
and are shown when mode is used locally. Listing [4.2] shows mode with
informational messages mixed in.

Listing 4.1: Example of text mode use

Matilda 2016—03 running in text mode. In this mode the
options are limited and no time limit is enforced. To run
using GTP add the flag —gtp. Playing with Chinese rules
with 7.5 komi; game is over after two passes or a
resignation.

White (O): matilda
Black (X): human

ABCDETFGHJ

9 .o 9
8 Coe e 8
7 .ot + 7

88

4.8. USE DEMONSTRATION

A T

=N WA
=N WA

ABCDETFGHIJ

(Type the board position, like D6, or undo/pass/resign/score
/ quit)

Your turn (X): e5

White (O): matilda

Black (X): human

Plays (1): Be5

ABCDEFGHJ

A(X).

N T

N WD UTO] 0O
=N WD UTO] 0O

ABCDEFGH/J
Last played E5

Computer thinking ...

Listing 4.2: Example of GTP mode use

0.000: Matilda now running over GTP

genmove b

4.138: time to play: 15.000s

4.138: mcts: time to play doubled to initialize tree

4.141: pat3: imported 22 with weights and generated 3042
patterns

34.181: mcts: search finished (sims=651217, depth=18, wr
=0.49)

89

4.8. USE DEMONSTRATION

= E5

34.407: mects: freed 98068 states (460 MiB)

genmove b

36.506: time to play: 14.248s

50.754: mcts: search finished (sims=302790, depth=17, wr
=0.63)

= E7

50.873: mcts: freed 820959 states (3852 MiB)

90

Chapter

Conclusion

5.1 Commentary

Matilda, as a computer Go player, attempts to play high quality Go (and succeeds
in small boards), but it still has a long way to go in 19x19. It was created first as
a means to understand the problems pertaining to computer Go and explore some
improvements; and only secondly as a realistic attempt at an as strong as can be
player. A strong computer Go program takes many years to develop, slowly inching
towards greater strength.

While there is not a lot of free computer Go software, this dissertation could also
have been built around another program, like Fuego, avoiding a lot of, ultimately,
unnecessary work. This was opted against because it was important to build the
whole solution to learn from experience the problems and solutions present in mod-
ern computer Go software, and from there being able to think of improving upon
them. While what is presented here is only a part of computer Go development, we
hope it serves as a good foundation for later work on Matilda or other projects.

If it were possible to go back in time, one of the best recommendations to make
would have been to use parameter optimization methods from the start. The amount
of time spent on parameter tuning, even when automatic, is tremendous. In produc-
ing Matilda over 600000 matches have been played against GNU Go for tuning.

Another recommendation would have been to have opted for a comparison of
with the use of heavy — or deep — neural networks, like [CNN] instead of only
lighter ANNL The exploration of the method, while the rest of the computer
Go community invested in [CNN] was in retrospect a prediction blunder.

On aiming to produce a strong computer Go program, many worthy problems
were only glanced over. The problematics of accurate scoring — for instance — where
whole-game simulation is performed instead of formally identifying the life and

91

5.2. FUTURE WORK

death status of the stones. Other areas of research pertaining to Go are not just
interesting because they’re there, but also because they can bring meaning to MCTS
based decisions — by helping a human user to understand the decisions made, even
if not the process by which it arrived at them.

This work also made use of implementation surveys of computer Go free soft-
ware, mainly Fuego and Pachi, and commentary from computer Go researchers from
the computer-go mailing list, to which the author is indebted.

5.2 Future work

As evidenced in the Results section of the Implementation chapter, Matilda struggles
much more on large boards than in smaller ones. The reasons for this can be grouped
as follows:

1. Lack of strategic evaluation. Most computer Go programs feature rich strate-
gic and tactical functions that can recognize and take advantage of more situ-
ations than the very few supported in Matilda. Without these shortcuts it is up
to the internal representation of to solve many difficult sub-problems.
Concepts like areas of influence, Martin Miiller’s definition of zone [M{i02b],
player framework, and specific exhaustive solvers for capture races are neces-
sary to better understand subtle whole-board problems. Databases of joseki,
tesuji and understanding good and bad shape are all absent. The repre-
sentation also lacks a more high level abstraction of groups of stones not yet
but probably connected, and allowing reasoning over the safety of groups.

2. We haven’t obtained good results using trained playout policies — via MM.
MoGo handcrafted policies are known to produce good sequences of local
moves, and since they were tailored for strength at 9x9, they may be unsuited
for larger boards. Also keeping track of key points and ko threats may be nec-
essary to produce more accurate playouts.

3. Insufficient tuning. More testing is necessary; specially in larger board sizes.
As seen in other programs, the impact of RAVE should be very positive and
even replace the use of the UCB term in the selection phase. In Matilda the
impact is positive but not that impressive, which reflects in the poorer results in
larger boards. The reason for this discrepancy may be the misparametrization
of the Heuristic UCT-RAVE prior values. These priors are still being learned
and have not been tuned for 19x19.

Table makes the case for the use of RAVE not being enough to replace the
UCB term. The games were played against GNU Go level 0 with 5000 simulations

92

5.2. FUTURE WORK

Disabled Win rate | Games
nothing 58.4% 358
UCB term 26.4% 307
RAVE 54.4% 320
Criticality 52.9% 780
LGRF 48.4% 440
prior values 44% 450
heavy playouts | 7.1% 326

Table 5.1: Impact of removing different improvements

Disabled | Win rate | Games
nothing | 81.1% 201
RAVE 77.5% 209

Table 5.2: Impact of removing RAVE with 100000 simulations per turn

per turn on 9x9. As can be seen, the impact of RAVE is small with this few number
of simulations; the tests are repeated in Table[5.2] for RAVE with 100000 simulations
per turn. In any number of simulations, the impact of RAVE was expected to be more
positive. This is probably because RAVE (and AMAF smoothing constant D) — which
is an improvement aimed at larger boards — was also only tuned in 9x9. Figure [3.3]
(page shows the impact of b is small in 9x9.

The use of[ANN/has shown that, with little domain knowledge given, a small[MLP|
does not introduce a significant advantage. Its advantage at identifying good looking
— promising — moves when the board is very empty is already in part overshadowed
by more efficient domain knowledge heuristics, or trained features. Methods like
[MM] are able to reach accuracies of over 40% over professional records [[Cou07]
(these results have not been reproduced). Having a lower bound on the contribution
of a network, it is interesting to find next the upper bound - the point at which using
a larger [CNNI no longer contributes to the program.

Matilda may also have been too optimized for speed instead of playing strength.
Looking back to Table [3.3] (page [53), the diminishing returns may justify preferring
more costly — accurate heuristics, when playing with longer thinking times. Parame-
ter optimization also has to contemplate the impact on different total playing times.

Several small improvements from a performance point of view, but important for
a users experience, are also scheduled to be implemented. These include simulating
other rule sets (particularly Japanese), playing in online servers other than KGS Go
Server, analyzing previous matches, better seki resolution, improved score estimates

93

5.2. FUTURE WORK

in unsettled game positions and supporting Fischer clock and other non-byo-yomi
based time systems.

When Matilda was started the use of was an emerging idea; by the time
this document was finished had already revolutionized computer Go and pro-
duced the first victory against a professional human player in an even game. This
increasingly means that a practical decision will eventually have to be made on the
future of Matilda: whether to support a greater variety of computer systems by not
implementing [CNN]| relying more on rules and reasoning; or follow the competitive
route and start experimenting with to maximize playing strength. seem
poised to become ubiquitous in Go in the next years.

94

Chapter

References

[AFKO2] Peter Auer, Paul Fischer, and Jyrki Kivinen. Finite-time analysis of the
multiarmed bandit problem. In Machine Learning, 2002.

[AlI94] Louis Victor Allis. Searching for Solutions in Games and Artificial
Intelligence, 1994.

[Alm97] L. B. Almeida. Handbook of Neural Computation, chapter Multilayer
perceptrons. 1997.

[Alt15] Ingo Althofer. Frisbee Go Simulation, 2015. http://computer-go.
org/pipermail/computer-go/2015-November/008172.html
[Online; accessed 6-May-2016].

[Baull] Petr Baudis. MCTS with Information sharing. PhD thesis, Faculty of
Mathematics and Physics of the Charles University in Prague, 2011.

[BD10] Hendrik Baier and Peter D. Drake. The Power of Forgetting: Improv-
ing the Last-Good-Reply Policy in Monte-Carlo Go, 2010.

[BHO3] Bruno Bouzy and Bernard Helmstetter. Monte Carlo Go Develop-
ments. In Advances in Computer Games Conference ACG-10, pages
159-174, 2003.

[Bru93] Bernd Bruegmann. Gobble, 1993. http://www.cgl.ucsf.edu/
go/Programs/Gobble.html [Online; accessed 12-February-2016].

[CBKO8] Benjamin E. Childs, James H. Brodeur, and Levente Kocsis. Transpo-
sitions and Move Groups in Monte Carlo Tree Search, 2008.

[CJP] Barbara Chapman, Grabrielle Jost, and Ruud Van Der Pas. Using

OpenMP: portable shared memory parallel programming.

95

http://computer-go.org/pipermail/computer-go/2015-November/008172.html
http://computer-go.org/pipermail/computer-go/2015-November/008172.html
http://www.cgl.ucsf.edu/go/Programs/Gobble.html
http://www.cgl.ucsf.edu/go/Programs/Gobble.html

[Cou07]

[Coul2]

[CS14]

[CWHO8]

[CWSvdHO8]

[Dah99]

[Enz03]

[GS11]

[GWMTO6]

[Hay98]

[HCL10]

[MHSS14]

96

Rémi Coulom. Computing Elo Ratings of Move Patterns in the Game
of Go. In Proceedings of the Computers Games Workshop 2007, pages
113-124, 2007.

Rémi Coulom. Advances in Computer Games: 13th International Con-
ference, ACG 2011, Tilburg, The Netherlands, November 20-22, 2011,
Revised Selected Papers, chapter CLOP: Confident Local Optimization
for Noisy Black-Box Parameter Tuning, pages 146-157. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. http://dx.doi.org/
10.1007/978-3-642-31866-5_13.

Christopher Clark and Amos J. Storkey. Teaching Deep Convolutional
Neural Networks to Play Go. CoRR, abs/1412.3409, 2014.

Guillaume M. J-B. Chaslot, Mark H. M. Win, and H. Jaap Van Den
Herik. Parallel Monte-Carlo Tree Search. In 6th International Confer-
ence, Computers and Games 2008, pages 60-71, 2008.

Guillaume M. J-B. Chaslot, Mark H. M. Winands, Istvan Szita, and
H. Jaap van den Herik. Cross-Entropy for Monte-Carlo Tree Search.
In ICJA Journal 31, pages 145-156, 2008.

Fredrik A. Dahl. Honte, a Go-Playing Program Using Neural Nets. In
Workshop on Machine learning in Game Playing, pages 205-223. Nova
Science Publishers, 1999.

M. Enzenberger. Evaluation in Go by a neural network using soft
segmentation. In 10th Advances in Computer Games conference, pages
97-108. Kluwer Academic Publishers, 2003.

Sylvain Gelly and David Silver. Monte-Carlo Tree Search and Rapid
Action Value Estimation in Computer Go, 2011.

Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modi-
cation of UCT with patterns in Monte-Carlo Go, 2006.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Pren-
tice Hall, 2 edition, 1998.

Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin. Monte-Carlo
Simulation Balancing in Practise, 2010.

Chris J. Maddison, Aja Huang, Ilya Sutskever, and David Silver. Move
Evaluation in Go Using Deep Convolutional Neural Networks. CoRR,
abs/1412.6564, 2014.

http://dx.doi.org/10.1007/978-3-642-31866-5_13
http://dx.doi.org/10.1007/978-3-642-31866-5_13

[Mii02a]

[Mii02b]

[RMM97]

[Seal6]

[SMO07]

[SWUHO07]

[TFO7]
[Trol6]

[TT95]

[TZ15]

[vdWO04]

[Zob70]

Martin Miiller. Computer Go, 2002.

Martin Miiller. Counting the score: Position evaluation in computer
Go. In Computers and games: 4th International Conference, CG 2004,
Volume 3846 of Lecture notes in computer science, pages 273-284.
Springer, 2002.

Norman Richards, David E. Moriarty, and Risto Miikkulainen. Evolv-
ing Neural Networks to Play Go. Applied Intelligence, 8:85-96, 1997.

David Silver and Aja Huang et al. Mastering the Game of Go with
Deep Neural Networks and Tree Search, 2016.

D. Silver and M. Miiler. Reinforcement Learning of Local Shape in
the Game of Go. In 20th International Joint Conference on Artificial
Intelligence, pages 1053-1058, 2007.

Jahn-Takeshi Saito, Mark H. M. Winands, Jos W. H. M. Uiterwijk, and
H. Jaap Van Den Herik. Grouping Nodes for Monte-Carlo Tree Search.
In BNAIC 2007, pages 276-283, 2007.

John Tromp and Gunnar Farnebick. Combinatorics of Go, 2007.

John Tromp. Number of legal Go positions, 2016. http://tromp.
github.io/go/legal.html [Online; accessed 22-January-2016].

John Tromp and Bill Taylor. =~ Tromp-Taylor Concise Rules of
Go, 1995. http://www.cs.cmu.edu/ wjh/go/tmp/rules/
TrompTaylor.html [Online; accessed 5-February-2016].

Yuandong Tian and Yan Zhu. Better Computer Go Player with Neural
Network and Long-term Prediction. CoRR, abs/1511.06410, 2015.

Erik van der Werf. Al techniques for the game of Go. PhD thesis, Uni-
versitaire Pers Maastricht, 2004.

Albert Zobrist. Feature Extraction and Representation for Pattern Recog-
nition and the Game of Go. PhD thesis, University of Wisconsin, 1970.

97

http://tromp.github.io/go/legal.html
http://tromp.github.io/go/legal.html
http://www.cs.cmu.edu/~wjh/go/tmp/rules/TrompTaylor.html
http://www.cs.cmu.edu/~wjh/go/tmp/rules/TrompTaylor.html

Index

absolute time, 50
atari, 6, 7

byo-yomi, 50

Common Fate Graph, 71
CRC32, 59, 60

eye, 10
eye shape, 8

game state, 21

Handicap, 14
hane, 39
horizon effect, 32, 68

joseki, 10

ko rule, 7
ko threat, 10
komi, 8

99

ladder, 10

mercy threshold, 38
miai, 10

MLB 40

multi-armed bandit, 23

nakade, 10

Open MPI, 86
OpenMB 55, 85

seki, 10
state reduction, 58
superko, 7

tenuki, 12

Tromp-Taylor rules, 14, 76

Zobrist hashing, 60

	List of Figures
	Acronyms
	Introduction
	Motivation
	Goals and expectations
	Structure of this document

	Problem
	The game of Go
	Chinese rules
	Computer Go
	Techniques for computer Go

	Solution
	Model
	State space search
	Monte Carlo searches
	Guiding Monte Carlo tree searches
	Upper confidence bounds for trees
	UCT with transposition tables
	All-Moves-As-First
	Rapid Action Value Estimation
	Further MCTS improvements
	Play criticality
	Play effectivity
	Last Good Reply with Forgetting
	Dynamic komi
	Domain knowledge
	Playout phase

	Artificial neural networks
	Genetic evolution of neural networks
	Go playing neural networks
	Evolving neural networks
	Training multilayer perceptrons
	Use as prior values heuristic

	Time allotting
	Against humans

	Implementation
	Organization
	GTP and SGF support

	Book openings
	State hashing
	Joseki book

	Monte Carlo tree search
	Move selection
	UCT+T structure
	State representation
	Heavy playouts

	Tallying the score
	Results
	ANN for state evaluation
	Strength at playing Go
	Data set used

	Parallelization
	Testing
	Use demonstration

	Conclusion
	Commentary
	Future work

	References
	Index

